
Background: The present research is based on the hypothesis that foliar spray of zinc oxide 
nanoparticles (ZnO NPs) or application of biofertilizers such as vesicular arbuscular mycorrhiza (VAM) 
or arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSBs) are more e�cient 
than generally used chemical fertilizers supplementation such as nitrogen (N), phosphorus (P) and 
supplementation of zinc (Zn).

Methods: In this study, six mustard varieties, Brassica juncea var. Alankar, Pusa Jai Kisan, Varuna, 
Sakha, Rohini, and Pusa Bold were tested for their comparative growth responses. Out of the six 
tested varieties, only two screened varieties (Alankar and Rohini) were further tested for their 
comparative growth responses among the foliar spray of zinc oxide nanoparticles (ZnO NPs), 
soil-applied chemical fertilizers to supplement nitrogen (N) phosphorus (P) and zinc (Zn) as zinc 
sulfate and soil-applied biofertilizers as phosphate solubilizing bacteria (PSBs) and vesicular 
arbuscular mycorrhiza (VAM) or arbuscular mycorrhizal fungi (AMF).

Results: The results revealed that out of these three treatments, ZnO NPs signi�cantly (p≤0.05) 
increased the growth morphology of the two mustard varieties, followed by VAM/AMF and PSBs, 
which were followed by chemical supplementation of N, P, and Zn. The e�ects were more 
pronounced in Alankar than in the Rohini variety of mustard. 

Conclusions: From the present study, it is concluded that foliar spray of ZnO NPs and the application 
of biofertilizers can be a potent alternative to costly chemical fertilizers in the cultivation of mustard 
crops.
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Mustard (Brassica juncea L.) is one of the important oilseed 
crops grown in the Rabi (winter) season and contributes to 25% 
of the oilseed economy of India [1,2]. �e use of chemical 
fertilizers in arable soil is a routine practice in modern 
agriculture to supplement the depleting nutrients from natural 
soil fertility, among them nitrogen, phosphorus, potassium 
(NPK) and zinc (Zn) are more common [3,4]. Mustard varieties 
also respond to chemical fertilizers, particularly N and P. �e 
recommended dose of chemical fertilizers is crop-speci�c; 
excess or less application may lead to suboptimal production of 
lethal e�ects. Increased population growth and demand for 
food supply required higher use of chemical fertilizers, a costly 
input [5]. Additionally, excess use of these fertilizers polluted all 
three spheres of the environment [6]. Potential substitutes, 
biofertilizers, including arbuscular mycorrhizal fungi (AMF) 
and phosphate-solubilizing bacteria (PSBs), are cost-e�ective, 
pollution-free, renewable, and safe for crops [7]. Arbuscular 
mycorrhizae supplement nitrate and phosphate ions along with 
other metal ions within the rhizosphere [8]. Phosphate 
solubilizing bacteria unlock the phosphate from the complex 
soil composites and solubilize them with the help of phytase 
enzyme, while AM fungi besides facilitating critical minerals 

modify host root architecture. �ese biofertilizers also secrete 
phytohormones in the host rhizosphere and protect them 
from soil borne pathogens [7,8]. Zinc plays a functional role in 
many physiological processes, in biochemical reactions, such 
as metalloenzymes [3,9], in the biosynthesis of proteins and 
chlorophyll, and in immune responses in animal systems [10]. 
Several metalloenzymes and biochemical reactions require Zn 
as a cofactor in cell metabolism [11]. Among the critical 
elements, nitrogen is an important part of the functional and 
structural part, i.e., proteins, secondary metabolites, 
coenzymes, and other molecules; phosphorus has a major role 
in nucleotide biosynthesis and energy transactions and 
signaling, while potassium regulates cell osmolarity and ion 
exchange [12]. Zinc de�ciency in crops is common and o�en 
represented as zinc hunger [13].

 In part, Zn hunger is prevalent due to the plant’s ine�cacy 
of absorbing and translocating it [14] or soil de�ciency [13]; 
thus, Zn fertilization improves the production and quality of 
produce in several crop plants. �erefore, to mitigate issues 
such as the limited availability of soil nutrients, high rates of 
loss of soil-applied fertilizers, and constraints on nutrient 
delivery to plant organs due to environmental conditions 

during critical growth stages. Foliar fertilization for sustainable 
crop management has recently been well-addressed [15]. 
Fertilization through foliar spray has been proven to alleviate 
micronutrient de�ciencies, reduce toxicity, and avoid 
fertilizer-related pollution [16-19]. Zn-induced phytotoxicity 
can directly reduce photosynthesis [20] or can create nutritional 
imbalance by interacting with other nutrients [21].

 To unleash the full potential of plant performance, 
nanoparticle fertilizer represents a new and e�ective technique 
of nutrient delivery. �is is crucial for creating more sustainable 
crop systems globally [22,23]. Nanoparticles are de�ned as 
particles with a size of less than 100 nm in at least one 
dimension [24]. Improvements in seed germination, seedling 
growth, biomass, total nitrogen content, protein and sugar 
contents, photosynthetic e�ciency, and nutrient uptake are all 
documented as positive impacts of nanoparticles (NPs) on plant 
growth in crops such as cucumber, mung, spinach, wheat, and 
tomato [25-29]. Research shows that NPs can enter plant tissues 
and then move inside a plant’s body systemically [30-32]. 
Among the di�erent NPs used, ZnO NPs are currently the 
fourth most widely used in the world [33]. Due to their unique 
characteristics compared to conventional Zn fertilizers, ZnO 
NPs can also serve as cutting-edge Zn fertilizers. Uncertainty 
exists regarding the process through which ZnO NPs enter 
plants. Studies have demonstrated that foliar ZnO NP and 
ZnSO4 spraying on wheat increased the Zn content in grains 
while leaving no traces of ZnO NP in them [29]. With slower 
delivery of micronutrients and a reduced risk of soil pollution 
and other environmental hazards compared to applying 
chemical fertilizers directly to the soil, nanoscale fertilization 
may be able to prevent the symptoms of phytotoxicity in plants 
[34]. In addition, nanoscale fertilizer application requires a 
lesser amount of fertilizer than conventional ones used through 
soil [35]. Even in stressed regimes, the use of nanofertilizers has 
been proven to have positive impacts on plant growth compared 
to normal  conditions [32,35-40]. However, whether it is a nano 
application, these e�ects depend on concentration.

 �e present research work is based on the hypothesis that 
foliar spraying of ZnO NPs or application of biofertilizers such 
as VAM or AMF and PSBs are more e�cient and promote plant 
growth better than generally used chemical fertilizer 
supplementation like nitrogen (N), phosphorus (P) and 
supplementation with zinc (Zn).

 �erefore, the present study aimed to compare the impacts 
of various soil-applied chemical fertilizers, such as N, P, Zn, 
foliar spray of ZnO NPs, and soil-applied bio-fertilizers such as 
phosphate solubilizing bacteria (PSBs) and arbuscular 
mycorrhizal fungi (AMF), on the growth and biochemical 
responses of mustard cultivars.

Materials and Methods
Experimental site and design
�e present experiment was performed in the Botany 
Department of Tilakdhari College, Jaunpur, state Uttar Pradesh 
(25° 73’ N latitude, 82°68’ E longitude at an elevation of 96 m 
above mean sea level). �e 25 × 25 cm earthen pots were �lled 
with 3 kg of �eld soil with the properties given in Table 1. �e 
recommended dose of fertilizers was mixed with the soil 
present in the pot. �e experiment was conducted under 
ambient environmental conditions in September-February 
2020.

 Pots were placed in a randomized completely block design 
(RCBD) where the experiment consisted of two factors and �ve 
replicates (2×7×5). �rst factor is two varieties of Brassica juncea 
(L.). �e second factor included seven levels of fertilizer 
treatments (control, ZnO NPs, Zn, N, P, PSB, and AMF) and �ve 
replicates for each treatment randomly distributed in block 
(RBD). �e total experimental units were 70(2×7×5=70).

Materials and experimental treatment plan
�e authentic seeds of Brassica juncea (L.) Czern and Coss cv. 
Alankar and Rohini were selected based on previous 
experiments and were procured from the National Seed 
Corporation Ltd., New Delhi, India. �e cultural strains of 
biofertilizers (Glomus intraradices) inoculum and PSB 
Pseudomonas aeruginosa) were procured from the Agriculture 
Department Seed Distribution Unit, District Agriculture O�ce, 
Quarsi Road, Aligarh. �e nanoparticles (ZnO-NPs) were 
purchased from Sigma-Aldrich Chemicals Pvt. Ltd. India. 100 
mM stock solution of ZnO-NPs was prepared by dissolving its 
required amount in 10 ml DDW in a 100 ml volumetric �ask, 
and making up total volume 100 ml by adding DDW. �e 
working concentrations of NPs were prepared by diluting this 
stock solution of ZnO-NPs as per requirement.

 Healthy, uniform-sized seeds were surface sterilized with a 
0.01% solution of mercuric chloride for 5 min to disinfect from 
surface pathogens and then washed repeatedly with double 
distilled water (DDW). To check the percent germination of 
seeds, a germination test was also conducted. Seeds of two 
mustard varieties, Alankar and Rohini, were sown in pot soils. 
�e soil analysis was conducted before the experiment 
presented in Table 1. Eight seeds per pot were sown and then 
thinned to three plants per pot one week a�er germination, 
selecting robust growing similar plants. 

 Among the six treatments (excluding control) of plants, 
three sets were maintained for the two mustard varieties. Five 
pots for each treatment were maintained as replicates (n=5). 
Mustard plants were irrigated with tap water as needed (Figure 1).
1. �e �rst set of plants was foliar sprayed with ZnO NPs (4 

millimoles aqueous solution).
2. For the next two di�erent sets, AM fungus and PSB were 

applied. Fi�y grams of Rhode grass cultured AM fungus; 
Glomus intraradices inoculum, was added to the soil around 
the seed to provide 500 IP (infective propagules) per pot. As 
a PSB, a suspension culture of Pseudomonas aeruginosa was 
used for the treatment of seeds. One milliliter of nutrient 
broth (Mannitol 10g, Yeast extract 1.0g, K2HPO4 0.5g, 

MgSO4.7H2O 0.2g, NaCl 0.1g per liter of DDW) suspension 
contained approximately 1.5×109 cfu per ml of media. Seeds 
were coated with this suspension culture and dried in a cool 
shady place before sowing. 

3. For three di�erent sets, N, P, and Zn were amended in the 
pot soil as per recommended doses of 120, 60, and 25 kg/ha 
taking urea, single superphosphate, and ZnSO4 as fertilizers. 
�e fertilizer requirement per kg pot soil was calculated* as 
72, 104, and 19 mg, respectively.

Methodology
At 60 days a�er sowing (DAS), the plants were sampled to study 
the following growth features.

Growth analysis
�e root and shoot lengths of the two varieties were measured 
using a meter scale. �e ratio of the shoot by root length was 
calculated by dividing the lengths of the two. �e fresh and dry 
mass of roots and shoots was measured with an electronic 
balance. To analyze the dry mass, the uprooted plants (roots and 
shoots) were placed in an oven at 80°C for 72 h and wrapped in 
butter paper. �e dried plants were then weighed to record plant 
dry mass. �e leaf area of randomly selected leaves from each 
variety was determined by the graph paper method of Pandey 
and Singh [41].

Total chlorophyll and proline content in leaves
�e leaf ’s total chlorophyll content was estimated in �nely cut 
fresh leaves following the method of Mackinney [42]. �e leaf 
proline content in fresh tissue was determined by following the 
method of Bates et al. [43].

Activity of Carbonic anhydrase (CA) and Nitrate 
reductase (NR) enzyme
Carbonic anhydrase activity (CA, E.C. 4.2.1.1) and nitrate 
reductase activity (NR, E.C. 1.6.6.1) were determined by 
following Dwivedi and Randhawa [13] and Jaworski [44] in 
fresh leaf samples.

Statistical analysis
�e experiment was conducted according to a simple 
randomized block design (SRBD). Each treatment was 
replicated �ve times (n=5), and three plants per pot were 
maintained where each pot was considered a replicate. 
Treatment means were compared by analysis of variance using 
R ver. 3.1.0 for Windows. �e least signi�cant di�erence (LSD) 
between treatment means was calculated at a 5% probability 
level (p< 0.05). 

Results
Growth parameters
Most of the (bio)fertilizer treatments (ZnO NPs, Zn, N, P, PSBs 
or AMF) promoted the growth (length, fresh mass, dry mass of 
root and shoot and leaf area) parameters in both varieties in a 
treatment-dependent manner at 60 DAS (Figure 2). However, 
the maximum stimulation of most of the growth parameters is 
achieved by ZnO NPs followed by either PSB or AMF. However, 
the Alankar variety outperformed the treatment here. �e root 
dry mass of Alankar for ZnO NPs, PSB, and AMF was 88%, 
62%, and 86%, respectively, while for shoot dry mass it was 83%, 
72%, and 80%, compared to control plants. For the same 
treatments leaf area improvement of Alankar was 35%, 28%, 
and 34%, and for Rohini, it was 33%, 23%, and 28%, 
respectively. �e ratio of the shoot by root length showed 
di�erent responses for the treatments.

Total chlorophyll content in leaves
�e total chlorophyll content (Figure 3A) in leaves increased 
signi�cantly (p≤0.05) when the two varieties were foliar sprayed 
with ZnO NPs. Alankar registered a 28% increase, while Rohini 
re�ected a 19% increase. �e PSB and AMF treatments also 

signi�cantly (p≤0.05) increased the leaf chlorophyll contents by 
28% and 34% in Alankar and 10% and 16% in Rohini, 
respectively, compared to the control plants. No signi�cant (p≤
0.05) increase in leaf chlorophyll level was noticed against 
soil-mediated N, P, and Zn treatments in the two varieties of 
mustard. 

Proline content in leaves
A signi�cant (p≤0.05) increase in leaf proline content (Figure 
3B) was recorded against the leaf-sprayed ZnO NPs and the 
soil-mediated two biofertilizers (PSB and AMF/VAM) and 
nitrogen treatment in the Alankar and Rohini varieties of 
mustard plants. �e data indicated that proline accumulation 
was higher in Alankar than in Rohini against the given 
treatments. For the above treatments, the increase was 46%, 
39%, 42%, and 37%, respectively, for Alankar. For Rohini, the 
increase was lesser, and in the order of ZnO 
NPs>AMF>PSB>N, an insigni�cant increase of proline was 
registered for the treatments of soil-mediated Zn and P 
recorded compared to control plants in the two varieties.

Nitrate reductase (NR) and carbonic anhydrase (CA) 
activity
�e two mustard varieties; Alankar and Rohini, showed a 
signi�cant (p≤0.05) increase in NR and CA activity (Figure 3C 
and 3D) compared to most of the treatments. �e increase in 

the activity of these enzymes against all the treatments of 
chemicals and biofertilizers was higher in Rohini than in 
Alankar. For NR activity, ZnO NP was followed by Zn and N 
treatments in the two varieties, and for CA, it was followed by 
AMF/VAM and PSBs, respectively. For NR activity, the increase 
against ZnO NP treatment was 140% and 111% in Alankar. For 
the Zn and N treatments, however, the increase in NR activity 
was 99% and 72%, respectively, compared to the control plants. 
�e CA activity was 79% and 58% for the two varieties, Alankar 
and Rohini, respectively. 

Discussion
Our agricultural system depends on the supplementation of 
primary nutrients (such as N, P, and K) to maximize crop 
output and support modern agriculture [45]. Mineral ion 
uptake properties show variation among plant species and 
cultivars [46]. In mustard plants, the growing seeds and leaves 
compete for nitrogen, and the size of the nitrogen pool in the 
vegetative sections largely determines seed set, seed growth, and 

�nal seed production [47,48]. Nitrogen supply in�uences 
several growth parameters, produces more robust growth and 
development, and increases plant height, number of �owering 
branches, total plant weight, and leaf area, all of which 
cumulatively enhance the yield output [49,50]. Brassica growth 
and yield improved with the application of 100–130 kg/ha 
nitrogen, while yield also increased at the same rate with the 
application of phosphorus [51-54]. However, this demand is 
typically higher in arid and semiarid environments [55,56]. As 
stated above, phosphorus has a greater impact on yield than 
nitrogen and potassium. Phosphorus is a component of nucleic 
acids, cell signaling, and membrane phospholipids. It also plays 
a role in energy metabolism, cell division, and the formation of 
several coenzymes, including ATP, NAD(P)H, and GTP [57]. P 
de�ciency manifests as visible purplish pigmentation on leaves, 
young, stunted stems, early leaf shedding, and reduced seed 
output [58,59]. Single, double, and triple superphosphate (SSP, 
DSP, TSP), ammonium phosphate, dicalcium phosphate, basic 
slag, calcium meta-phosphate, rock phosphate, bone meal, etc., 
are the main sources of plant phosphorus [60]. �e application 
of chemical fertilizers also poses a serious threat to nitrogen and 
other chemical pollution in soil and water bodies, leading to 
eutrophication [61]. To avoid nitrogen pollution and 
eutrophication of nutrients in water bodies, the application of 
nanosized nutrients, such as nanofertilizers, nanobiochar, and 
essential element nanoparticles, through foliar spraying has 
become a trend in recent studies because it minimizes the loss 
of nutrients and allows them to be e�ciently absorbed by plant 
leaves due to their nano size, which saves the environment and 
expenses of farmers [18, 62].

 �e �ndings of the present study demonstrated that the use 
of ZnO NPs improved the growth of two varieties, including the 
root and shoot length, their ratio, fresh and dry weight, and leaf 
area (Figure 2). Signi�cant di�erences were seen in the foliar 
delivery of ZnO NPs compared to soil amendment of Zn, which 
may be a cost-e�ective method for providing nutrients to the 
plants. A�er nitrogen, phosphorus, and potassium, Zn is 
regarded as the nutrient that limits yield the most both globally 
and in Indian soils [63]. According to estimates, 36.5% of 
Indian soils lack Zn [64]. While it is normal practice in modern 
agriculture to add fertilizers to complement natural soil fertility, 
temperate and tropical soils frequently continue to be low in 
micronutrients, particularly Zn [4,65]. Two forms of Zn 
in�uenced mustard growth di�erently. In general, foliar 
treatments with 4 mM ZnO NPs brought signi�cant 
improvement in growth parameters compared to Zn, N, or P 
given through soil and control plants. �e growth promotion 
was even higher than that with biofertilizers, PSBs, and AM 
fungi. Zinc from ZnO NPs can accumulate in the leaves through 
foliar feeding, making these NPs potentially useful sources of 
Zn for plants to employ in metabolic processes [66,67]. 
According to a recent study by [68], the predominant channel 
for wheat and sun�ower (Helianthus annuus L.) to absorb ZnO 
NPs under experimental conditions was through the leaf 
cuticle. In addition, ZnO NPs are used as nanofertilizers, which 
may be a more e�ective and slow-releasing source of Zn than 
conventional fertilizers or other sources of Zn [66,69,70]. 
According to a study by [71], applying ZnO NPs to the soil at 
various concentrations increased the Zn content of wheat 
tissues under normal or water-stress conditions. A�erwards, 
Adrees et al. [72] demonstrated that foliar exposure to ZnO NPs 
enhanced wheat development through foliar application. �e 

larger weights of the plants may be a factor in the enhanced 
availability of Zn as NPs compared to Zn applied to the soil. �e 
mustard plants’ growth and antioxidant enzyme activities were 
improved when ZnO NPs were sprayed [73]. �e intensi�cation 
of the metabolism aided by Zn is what causes the rise in dry 
mass. Enzymes, including dehydrogenases, aldolases, 
isomerases, transphosphorylases, and RNA and DNA 
polymerases, all require zinc to function [74]. Moreover, it 
contributes to tryptophan production, cell division, membrane 
structure maintenance, and photosynthesis and functions as a 
regulatory cofactor in protein synthesis [3,9]. Several species 
have been the subject of ZnO NPs experiments, and the overall 
bene�cial interactions have been previously characterized 
[35,74-76]. An increase in the FW and DW of seedlings growing 
in the presence of ZnO NPs was observed in earlier studies [77]. 
Reduced growth and plant biomass, restriction of cell 
elongation and division, wilting, curling, and rolling of young 
leaves, chlorotic and necrotic leaf tips, and suppression of root 
growth are all signs of Zn toxicity [78,79]. According to the 
�ndings of Rossi et al. [80] on co�ee plants treated with ZnO 
NPs, the photosynthetic apparatus was enhanced. In the present 
study, positive interactions were found between ZnO NPs and 
the net carbon assimilation rate and stomatal conductance. 

 In the present study, the e�cacy of treatments followed the 
pattern of ZnO NPs>AMF>PSBs>N and increased the leaf 
chlorophyll level, proline content, NR, and CA activity (Figure 
3 A-D). Nitrogen is a key nutrient component that gives crops 
their lush green color by increasing the amount of chlorophyll 
in the leaves and boosts biomass by increasing carbon �xation. 
However, depending on factors such as soil type, climate, 
management practices, when nitrogen is applied, cultivars, etc., 
nitrogen fertilizer needs can vary greatly [81]. Zn is a cofactor of 
carbonic anhydrase, which raises the amount of CO2 in the 
chloroplast and, as a result, also increases the ability of the 
Rubisco enzyme to carboxylate [82]. Di�erent macro-and 
micronutrient uptake can be a�ected by zinc’s e�ects on 
absorption [83,84]. Zn typically causes severe Fe de�ciency 
chlorosis in dicots on acidic soils. Crops such as lettuce, 
mustard, and beet are particularly vulnerable to too much soil 
Zn [85]. Zn transport and uptake by leaves were also 
investigated. Typically, ZnO NPs enter the leaf system through 
wounds, hydathodes, cuticle penetration, and stomata [10]. 
�is is evident from the data, which reveal that ZnO NPs 
markedly increased Zn levels in the leaf, while ZnSO4 did not 
signi�cantly accumulate when compared to the control. It 
results from the e�ects of adding P and other minerals, as well 
as phytohormones secreted by PSBs and AM fungi in the root 
zone. Positive e�ects of ZnO NPs were also studied on the seed 
germination and vegetative growth in di�erent crops of Arachis 
hypogea [86], Vigna radiata [87,88], Cicer arietinum [89], 
Glycine max [90], Helianthus annuus [91], Lycopersicon 
esculentum [92], Sesamum indicum [93], Brassica nigra [94] and 
Brassica juncea [95]. PGPR, such as PSB, proves useful in 
enhancing crop productivity by making nutrients more 
bioavailable in the soil with chemical secretion in the 
rhizosphere [96]. Alone and combination of AM fungi with 
biocontrol fungi or nanoparticles also prove e�ective in 
increasing the crop productivity in plants by increasing the 
phosphorus and other nutrients available in the soil by releasing 
chemicals in the soil that change the pH and amount of 
available organic matter content in the soil [97-99]. 
Combinations of PGPR and AMF improved the crop 

productivity in various plants and also helped to manage 
growth under stress conditions [100-103]. Although the 
interaction of Glomus species with mustard plants is not 
common, recent studies clearly show that it helps the plants to 
increase their resistance against pathogens and increase crop 
productivity by regulating enzymatic activities in plants and 
increasing the amount of nutrients and organic matter in the 
soil [104-106]. 

Conclusions 
Foliar exposure to ZnO NPs may be thought of as both an 
e�cient and di�erent method to increase productivity 
compared to other treatments. Nanoparticles have microscopic 
size and large surface area, which help maximize their uptake 
and translocation as nutrients in plants via foliar spray. As a 
result, ZnO NPs had more favorable e�ects on plant growth, 
morphology, development, physiology, and metabolism than 
traditional Zn salt because nanoparticles induce the genes 
involved in nutrient assimilation pathways. It may also be 
crucial to research how ZnO NPs a�ect other nutrients 
necessary for plant health as well as the general ecology of the 
rhizosphere. When compared to chemical fertilizer applications 
of P or even N, biofertilizers such as AMF/VAM and PSBs are 
also preferable because their chemical activity solubilizes and 
increases the bioavailability of nutrients in the soil, ultimately 
enhancing the growth of the treated plants. Further research is 
required to grow di�erent crop species in the �eld under diverse 
agroclimatic circumstances to determine the cost-e�ectiveness 
and adaptability of foliar ZnO NP exposure.

 However, a future aspect of this research is to determine 
the growth and yield responses of crops upon exposure to the 
combination of nanoparticles and biofertilizers. 
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Mustard (Brassica juncea L.) is one of the important oilseed 
crops grown in the Rabi (winter) season and contributes to 25% 
of the oilseed economy of India [1,2]. �e use of chemical 
fertilizers in arable soil is a routine practice in modern 
agriculture to supplement the depleting nutrients from natural 
soil fertility, among them nitrogen, phosphorus, potassium 
(NPK) and zinc (Zn) are more common [3,4]. Mustard varieties 
also respond to chemical fertilizers, particularly N and P. �e 
recommended dose of chemical fertilizers is crop-speci�c; 
excess or less application may lead to suboptimal production of 
lethal e�ects. Increased population growth and demand for 
food supply required higher use of chemical fertilizers, a costly 
input [5]. Additionally, excess use of these fertilizers polluted all 
three spheres of the environment [6]. Potential substitutes, 
biofertilizers, including arbuscular mycorrhizal fungi (AMF) 
and phosphate-solubilizing bacteria (PSBs), are cost-e�ective, 
pollution-free, renewable, and safe for crops [7]. Arbuscular 
mycorrhizae supplement nitrate and phosphate ions along with 
other metal ions within the rhizosphere [8]. Phosphate 
solubilizing bacteria unlock the phosphate from the complex 
soil composites and solubilize them with the help of phytase 
enzyme, while AM fungi besides facilitating critical minerals 

modify host root architecture. �ese biofertilizers also secrete 
phytohormones in the host rhizosphere and protect them 
from soil borne pathogens [7,8]. Zinc plays a functional role in 
many physiological processes, in biochemical reactions, such 
as metalloenzymes [3,9], in the biosynthesis of proteins and 
chlorophyll, and in immune responses in animal systems [10]. 
Several metalloenzymes and biochemical reactions require Zn 
as a cofactor in cell metabolism [11]. Among the critical 
elements, nitrogen is an important part of the functional and 
structural part, i.e., proteins, secondary metabolites, 
coenzymes, and other molecules; phosphorus has a major role 
in nucleotide biosynthesis and energy transactions and 
signaling, while potassium regulates cell osmolarity and ion 
exchange [12]. Zinc de�ciency in crops is common and o�en 
represented as zinc hunger [13].

 In part, Zn hunger is prevalent due to the plant’s ine�cacy 
of absorbing and translocating it [14] or soil de�ciency [13]; 
thus, Zn fertilization improves the production and quality of 
produce in several crop plants. �erefore, to mitigate issues 
such as the limited availability of soil nutrients, high rates of 
loss of soil-applied fertilizers, and constraints on nutrient 
delivery to plant organs due to environmental conditions 

during critical growth stages. Foliar fertilization for sustainable 
crop management has recently been well-addressed [15]. 
Fertilization through foliar spray has been proven to alleviate 
micronutrient de�ciencies, reduce toxicity, and avoid 
fertilizer-related pollution [16-19]. Zn-induced phytotoxicity 
can directly reduce photosynthesis [20] or can create nutritional 
imbalance by interacting with other nutrients [21].

 To unleash the full potential of plant performance, 
nanoparticle fertilizer represents a new and e�ective technique 
of nutrient delivery. �is is crucial for creating more sustainable 
crop systems globally [22,23]. Nanoparticles are de�ned as 
particles with a size of less than 100 nm in at least one 
dimension [24]. Improvements in seed germination, seedling 
growth, biomass, total nitrogen content, protein and sugar 
contents, photosynthetic e�ciency, and nutrient uptake are all 
documented as positive impacts of nanoparticles (NPs) on plant 
growth in crops such as cucumber, mung, spinach, wheat, and 
tomato [25-29]. Research shows that NPs can enter plant tissues 
and then move inside a plant’s body systemically [30-32]. 
Among the di�erent NPs used, ZnO NPs are currently the 
fourth most widely used in the world [33]. Due to their unique 
characteristics compared to conventional Zn fertilizers, ZnO 
NPs can also serve as cutting-edge Zn fertilizers. Uncertainty 
exists regarding the process through which ZnO NPs enter 
plants. Studies have demonstrated that foliar ZnO NP and 
ZnSO4 spraying on wheat increased the Zn content in grains 
while leaving no traces of ZnO NP in them [29]. With slower 
delivery of micronutrients and a reduced risk of soil pollution 
and other environmental hazards compared to applying 
chemical fertilizers directly to the soil, nanoscale fertilization 
may be able to prevent the symptoms of phytotoxicity in plants 
[34]. In addition, nanoscale fertilizer application requires a 
lesser amount of fertilizer than conventional ones used through 
soil [35]. Even in stressed regimes, the use of nanofertilizers has 
been proven to have positive impacts on plant growth compared 
to normal  conditions [32,35-40]. However, whether it is a nano 
application, these e�ects depend on concentration.

 �e present research work is based on the hypothesis that 
foliar spraying of ZnO NPs or application of biofertilizers such 
as VAM or AMF and PSBs are more e�cient and promote plant 
growth better than generally used chemical fertilizer 
supplementation like nitrogen (N), phosphorus (P) and 
supplementation with zinc (Zn).

 �erefore, the present study aimed to compare the impacts 
of various soil-applied chemical fertilizers, such as N, P, Zn, 
foliar spray of ZnO NPs, and soil-applied bio-fertilizers such as 
phosphate solubilizing bacteria (PSBs) and arbuscular 
mycorrhizal fungi (AMF), on the growth and biochemical 
responses of mustard cultivars.

Materials and Methods
Experimental site and design
�e present experiment was performed in the Botany 
Department of Tilakdhari College, Jaunpur, state Uttar Pradesh 
(25° 73’ N latitude, 82°68’ E longitude at an elevation of 96 m 
above mean sea level). �e 25 × 25 cm earthen pots were �lled 
with 3 kg of �eld soil with the properties given in Table 1. �e 
recommended dose of fertilizers was mixed with the soil 
present in the pot. �e experiment was conducted under 
ambient environmental conditions in September-February 
2020.

 Pots were placed in a randomized completely block design 
(RCBD) where the experiment consisted of two factors and �ve 
replicates (2×7×5). �rst factor is two varieties of Brassica juncea 
(L.). �e second factor included seven levels of fertilizer 
treatments (control, ZnO NPs, Zn, N, P, PSB, and AMF) and �ve 
replicates for each treatment randomly distributed in block 
(RBD). �e total experimental units were 70(2×7×5=70).

Texture Sandy loam 
pH  7.8 
CEC (meq/l) 3.56 
EC (dSm-1) 1 
Organic carbon (%) 0.32 
Available N (kg/ha) 106 
Available P (kg/ha) 15 
Available K (kg/ha) 230 
Available Zn (kg/ha) 0.34 

Table 1. Chemical characteristics of the soil before sowing.

Materials and experimental treatment plan
�e authentic seeds of Brassica juncea (L.) Czern and Coss cv. 
Alankar and Rohini were selected based on previous 
experiments and were procured from the National Seed 
Corporation Ltd., New Delhi, India. �e cultural strains of 
biofertilizers (Glomus intraradices) inoculum and PSB 
Pseudomonas aeruginosa) were procured from the Agriculture 
Department Seed Distribution Unit, District Agriculture O�ce, 
Quarsi Road, Aligarh. �e nanoparticles (ZnO-NPs) were 
purchased from Sigma-Aldrich Chemicals Pvt. Ltd. India. 100 
mM stock solution of ZnO-NPs was prepared by dissolving its 
required amount in 10 ml DDW in a 100 ml volumetric �ask, 
and making up total volume 100 ml by adding DDW. �e 
working concentrations of NPs were prepared by diluting this 
stock solution of ZnO-NPs as per requirement.

 Healthy, uniform-sized seeds were surface sterilized with a 
0.01% solution of mercuric chloride for 5 min to disinfect from 
surface pathogens and then washed repeatedly with double 
distilled water (DDW). To check the percent germination of 
seeds, a germination test was also conducted. Seeds of two 
mustard varieties, Alankar and Rohini, were sown in pot soils. 
�e soil analysis was conducted before the experiment 
presented in Table 1. Eight seeds per pot were sown and then 
thinned to three plants per pot one week a�er germination, 
selecting robust growing similar plants. 

 Among the six treatments (excluding control) of plants, 
three sets were maintained for the two mustard varieties. Five 
pots for each treatment were maintained as replicates (n=5). 
Mustard plants were irrigated with tap water as needed (Figure 1).
1. �e �rst set of plants was foliar sprayed with ZnO NPs (4 

millimoles aqueous solution).
2. For the next two di�erent sets, AM fungus and PSB were 

applied. Fi�y grams of Rhode grass cultured AM fungus; 
Glomus intraradices inoculum, was added to the soil around 
the seed to provide 500 IP (infective propagules) per pot. As 
a PSB, a suspension culture of Pseudomonas aeruginosa was 
used for the treatment of seeds. One milliliter of nutrient 
broth (Mannitol 10g, Yeast extract 1.0g, K2HPO4 0.5g, 

MgSO4.7H2O 0.2g, NaCl 0.1g per liter of DDW) suspension 
contained approximately 1.5×109 cfu per ml of media. Seeds 
were coated with this suspension culture and dried in a cool 
shady place before sowing. 

3. For three di�erent sets, N, P, and Zn were amended in the 
pot soil as per recommended doses of 120, 60, and 25 kg/ha 
taking urea, single superphosphate, and ZnSO4 as fertilizers. 
�e fertilizer requirement per kg pot soil was calculated* as 
72, 104, and 19 mg, respectively.

Methodology
At 60 days a�er sowing (DAS), the plants were sampled to study 
the following growth features.

Growth analysis
�e root and shoot lengths of the two varieties were measured 
using a meter scale. �e ratio of the shoot by root length was 
calculated by dividing the lengths of the two. �e fresh and dry 
mass of roots and shoots was measured with an electronic 
balance. To analyze the dry mass, the uprooted plants (roots and 
shoots) were placed in an oven at 80°C for 72 h and wrapped in 
butter paper. �e dried plants were then weighed to record plant 
dry mass. �e leaf area of randomly selected leaves from each 
variety was determined by the graph paper method of Pandey 
and Singh [41].

Total chlorophyll and proline content in leaves
�e leaf ’s total chlorophyll content was estimated in �nely cut 
fresh leaves following the method of Mackinney [42]. �e leaf 
proline content in fresh tissue was determined by following the 
method of Bates et al. [43].

Activity of Carbonic anhydrase (CA) and Nitrate 
reductase (NR) enzyme
Carbonic anhydrase activity (CA, E.C. 4.2.1.1) and nitrate 
reductase activity (NR, E.C. 1.6.6.1) were determined by 
following Dwivedi and Randhawa [13] and Jaworski [44] in 
fresh leaf samples.

Statistical analysis
�e experiment was conducted according to a simple 
randomized block design (SRBD). Each treatment was 
replicated �ve times (n=5), and three plants per pot were 
maintained where each pot was considered a replicate. 
Treatment means were compared by analysis of variance using 
R ver. 3.1.0 for Windows. �e least signi�cant di�erence (LSD) 
between treatment means was calculated at a 5% probability 
level (p< 0.05). 

Results
Growth parameters
Most of the (bio)fertilizer treatments (ZnO NPs, Zn, N, P, PSBs 
or AMF) promoted the growth (length, fresh mass, dry mass of 
root and shoot and leaf area) parameters in both varieties in a 
treatment-dependent manner at 60 DAS (Figure 2). However, 
the maximum stimulation of most of the growth parameters is 
achieved by ZnO NPs followed by either PSB or AMF. However, 
the Alankar variety outperformed the treatment here. �e root 
dry mass of Alankar for ZnO NPs, PSB, and AMF was 88%, 
62%, and 86%, respectively, while for shoot dry mass it was 83%, 
72%, and 80%, compared to control plants. For the same 
treatments leaf area improvement of Alankar was 35%, 28%, 
and 34%, and for Rohini, it was 33%, 23%, and 28%, 
respectively. �e ratio of the shoot by root length showed 
di�erent responses for the treatments.

Total chlorophyll content in leaves
�e total chlorophyll content (Figure 3A) in leaves increased 
signi�cantly (p≤0.05) when the two varieties were foliar sprayed 
with ZnO NPs. Alankar registered a 28% increase, while Rohini 
re�ected a 19% increase. �e PSB and AMF treatments also 

signi�cantly (p≤0.05) increased the leaf chlorophyll contents by 
28% and 34% in Alankar and 10% and 16% in Rohini, 
respectively, compared to the control plants. No signi�cant (p≤
0.05) increase in leaf chlorophyll level was noticed against 
soil-mediated N, P, and Zn treatments in the two varieties of 
mustard. 

Proline content in leaves
A signi�cant (p≤0.05) increase in leaf proline content (Figure 
3B) was recorded against the leaf-sprayed ZnO NPs and the 
soil-mediated two biofertilizers (PSB and AMF/VAM) and 
nitrogen treatment in the Alankar and Rohini varieties of 
mustard plants. �e data indicated that proline accumulation 
was higher in Alankar than in Rohini against the given 
treatments. For the above treatments, the increase was 46%, 
39%, 42%, and 37%, respectively, for Alankar. For Rohini, the 
increase was lesser, and in the order of ZnO 
NPs>AMF>PSB>N, an insigni�cant increase of proline was 
registered for the treatments of soil-mediated Zn and P 
recorded compared to control plants in the two varieties.

Nitrate reductase (NR) and carbonic anhydrase (CA) 
activity
�e two mustard varieties; Alankar and Rohini, showed a 
signi�cant (p≤0.05) increase in NR and CA activity (Figure 3C 
and 3D) compared to most of the treatments. �e increase in 

the activity of these enzymes against all the treatments of 
chemicals and biofertilizers was higher in Rohini than in 
Alankar. For NR activity, ZnO NP was followed by Zn and N 
treatments in the two varieties, and for CA, it was followed by 
AMF/VAM and PSBs, respectively. For NR activity, the increase 
against ZnO NP treatment was 140% and 111% in Alankar. For 
the Zn and N treatments, however, the increase in NR activity 
was 99% and 72%, respectively, compared to the control plants. 
�e CA activity was 79% and 58% for the two varieties, Alankar 
and Rohini, respectively. 

Discussion
Our agricultural system depends on the supplementation of 
primary nutrients (such as N, P, and K) to maximize crop 
output and support modern agriculture [45]. Mineral ion 
uptake properties show variation among plant species and 
cultivars [46]. In mustard plants, the growing seeds and leaves 
compete for nitrogen, and the size of the nitrogen pool in the 
vegetative sections largely determines seed set, seed growth, and 

�nal seed production [47,48]. Nitrogen supply in�uences 
several growth parameters, produces more robust growth and 
development, and increases plant height, number of �owering 
branches, total plant weight, and leaf area, all of which 
cumulatively enhance the yield output [49,50]. Brassica growth 
and yield improved with the application of 100–130 kg/ha 
nitrogen, while yield also increased at the same rate with the 
application of phosphorus [51-54]. However, this demand is 
typically higher in arid and semiarid environments [55,56]. As 
stated above, phosphorus has a greater impact on yield than 
nitrogen and potassium. Phosphorus is a component of nucleic 
acids, cell signaling, and membrane phospholipids. It also plays 
a role in energy metabolism, cell division, and the formation of 
several coenzymes, including ATP, NAD(P)H, and GTP [57]. P 
de�ciency manifests as visible purplish pigmentation on leaves, 
young, stunted stems, early leaf shedding, and reduced seed 
output [58,59]. Single, double, and triple superphosphate (SSP, 
DSP, TSP), ammonium phosphate, dicalcium phosphate, basic 
slag, calcium meta-phosphate, rock phosphate, bone meal, etc., 
are the main sources of plant phosphorus [60]. �e application 
of chemical fertilizers also poses a serious threat to nitrogen and 
other chemical pollution in soil and water bodies, leading to 
eutrophication [61]. To avoid nitrogen pollution and 
eutrophication of nutrients in water bodies, the application of 
nanosized nutrients, such as nanofertilizers, nanobiochar, and 
essential element nanoparticles, through foliar spraying has 
become a trend in recent studies because it minimizes the loss 
of nutrients and allows them to be e�ciently absorbed by plant 
leaves due to their nano size, which saves the environment and 
expenses of farmers [18, 62].

 �e �ndings of the present study demonstrated that the use 
of ZnO NPs improved the growth of two varieties, including the 
root and shoot length, their ratio, fresh and dry weight, and leaf 
area (Figure 2). Signi�cant di�erences were seen in the foliar 
delivery of ZnO NPs compared to soil amendment of Zn, which 
may be a cost-e�ective method for providing nutrients to the 
plants. A�er nitrogen, phosphorus, and potassium, Zn is 
regarded as the nutrient that limits yield the most both globally 
and in Indian soils [63]. According to estimates, 36.5% of 
Indian soils lack Zn [64]. While it is normal practice in modern 
agriculture to add fertilizers to complement natural soil fertility, 
temperate and tropical soils frequently continue to be low in 
micronutrients, particularly Zn [4,65]. Two forms of Zn 
in�uenced mustard growth di�erently. In general, foliar 
treatments with 4 mM ZnO NPs brought signi�cant 
improvement in growth parameters compared to Zn, N, or P 
given through soil and control plants. �e growth promotion 
was even higher than that with biofertilizers, PSBs, and AM 
fungi. Zinc from ZnO NPs can accumulate in the leaves through 
foliar feeding, making these NPs potentially useful sources of 
Zn for plants to employ in metabolic processes [66,67]. 
According to a recent study by [68], the predominant channel 
for wheat and sun�ower (Helianthus annuus L.) to absorb ZnO 
NPs under experimental conditions was through the leaf 
cuticle. In addition, ZnO NPs are used as nanofertilizers, which 
may be a more e�ective and slow-releasing source of Zn than 
conventional fertilizers or other sources of Zn [66,69,70]. 
According to a study by [71], applying ZnO NPs to the soil at 
various concentrations increased the Zn content of wheat 
tissues under normal or water-stress conditions. A�erwards, 
Adrees et al. [72] demonstrated that foliar exposure to ZnO NPs 
enhanced wheat development through foliar application. �e 

larger weights of the plants may be a factor in the enhanced 
availability of Zn as NPs compared to Zn applied to the soil. �e 
mustard plants’ growth and antioxidant enzyme activities were 
improved when ZnO NPs were sprayed [73]. �e intensi�cation 
of the metabolism aided by Zn is what causes the rise in dry 
mass. Enzymes, including dehydrogenases, aldolases, 
isomerases, transphosphorylases, and RNA and DNA 
polymerases, all require zinc to function [74]. Moreover, it 
contributes to tryptophan production, cell division, membrane 
structure maintenance, and photosynthesis and functions as a 
regulatory cofactor in protein synthesis [3,9]. Several species 
have been the subject of ZnO NPs experiments, and the overall 
bene�cial interactions have been previously characterized 
[35,74-76]. An increase in the FW and DW of seedlings growing 
in the presence of ZnO NPs was observed in earlier studies [77]. 
Reduced growth and plant biomass, restriction of cell 
elongation and division, wilting, curling, and rolling of young 
leaves, chlorotic and necrotic leaf tips, and suppression of root 
growth are all signs of Zn toxicity [78,79]. According to the 
�ndings of Rossi et al. [80] on co�ee plants treated with ZnO 
NPs, the photosynthetic apparatus was enhanced. In the present 
study, positive interactions were found between ZnO NPs and 
the net carbon assimilation rate and stomatal conductance. 

 In the present study, the e�cacy of treatments followed the 
pattern of ZnO NPs>AMF>PSBs>N and increased the leaf 
chlorophyll level, proline content, NR, and CA activity (Figure 
3 A-D). Nitrogen is a key nutrient component that gives crops 
their lush green color by increasing the amount of chlorophyll 
in the leaves and boosts biomass by increasing carbon �xation. 
However, depending on factors such as soil type, climate, 
management practices, when nitrogen is applied, cultivars, etc., 
nitrogen fertilizer needs can vary greatly [81]. Zn is a cofactor of 
carbonic anhydrase, which raises the amount of CO2 in the 
chloroplast and, as a result, also increases the ability of the 
Rubisco enzyme to carboxylate [82]. Di�erent macro-and 
micronutrient uptake can be a�ected by zinc’s e�ects on 
absorption [83,84]. Zn typically causes severe Fe de�ciency 
chlorosis in dicots on acidic soils. Crops such as lettuce, 
mustard, and beet are particularly vulnerable to too much soil 
Zn [85]. Zn transport and uptake by leaves were also 
investigated. Typically, ZnO NPs enter the leaf system through 
wounds, hydathodes, cuticle penetration, and stomata [10]. 
�is is evident from the data, which reveal that ZnO NPs 
markedly increased Zn levels in the leaf, while ZnSO4 did not 
signi�cantly accumulate when compared to the control. It 
results from the e�ects of adding P and other minerals, as well 
as phytohormones secreted by PSBs and AM fungi in the root 
zone. Positive e�ects of ZnO NPs were also studied on the seed 
germination and vegetative growth in di�erent crops of Arachis 
hypogea [86], Vigna radiata [87,88], Cicer arietinum [89], 
Glycine max [90], Helianthus annuus [91], Lycopersicon 
esculentum [92], Sesamum indicum [93], Brassica nigra [94] and 
Brassica juncea [95]. PGPR, such as PSB, proves useful in 
enhancing crop productivity by making nutrients more 
bioavailable in the soil with chemical secretion in the 
rhizosphere [96]. Alone and combination of AM fungi with 
biocontrol fungi or nanoparticles also prove e�ective in 
increasing the crop productivity in plants by increasing the 
phosphorus and other nutrients available in the soil by releasing 
chemicals in the soil that change the pH and amount of 
available organic matter content in the soil [97-99]. 
Combinations of PGPR and AMF improved the crop 

productivity in various plants and also helped to manage 
growth under stress conditions [100-103]. Although the 
interaction of Glomus species with mustard plants is not 
common, recent studies clearly show that it helps the plants to 
increase their resistance against pathogens and increase crop 
productivity by regulating enzymatic activities in plants and 
increasing the amount of nutrients and organic matter in the 
soil [104-106]. 

Conclusions 
Foliar exposure to ZnO NPs may be thought of as both an 
e�cient and di�erent method to increase productivity 
compared to other treatments. Nanoparticles have microscopic 
size and large surface area, which help maximize their uptake 
and translocation as nutrients in plants via foliar spray. As a 
result, ZnO NPs had more favorable e�ects on plant growth, 
morphology, development, physiology, and metabolism than 
traditional Zn salt because nanoparticles induce the genes 
involved in nutrient assimilation pathways. It may also be 
crucial to research how ZnO NPs a�ect other nutrients 
necessary for plant health as well as the general ecology of the 
rhizosphere. When compared to chemical fertilizer applications 
of P or even N, biofertilizers such as AMF/VAM and PSBs are 
also preferable because their chemical activity solubilizes and 
increases the bioavailability of nutrients in the soil, ultimately 
enhancing the growth of the treated plants. Further research is 
required to grow di�erent crop species in the �eld under diverse 
agroclimatic circumstances to determine the cost-e�ectiveness 
and adaptability of foliar ZnO NP exposure.

 However, a future aspect of this research is to determine 
the growth and yield responses of crops upon exposure to the 
combination of nanoparticles and biofertilizers. 
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Mustard (Brassica juncea L.) is one of the important oilseed 
crops grown in the Rabi (winter) season and contributes to 25% 
of the oilseed economy of India [1,2]. �e use of chemical 
fertilizers in arable soil is a routine practice in modern 
agriculture to supplement the depleting nutrients from natural 
soil fertility, among them nitrogen, phosphorus, potassium 
(NPK) and zinc (Zn) are more common [3,4]. Mustard varieties 
also respond to chemical fertilizers, particularly N and P. �e 
recommended dose of chemical fertilizers is crop-speci�c; 
excess or less application may lead to suboptimal production of 
lethal e�ects. Increased population growth and demand for 
food supply required higher use of chemical fertilizers, a costly 
input [5]. Additionally, excess use of these fertilizers polluted all 
three spheres of the environment [6]. Potential substitutes, 
biofertilizers, including arbuscular mycorrhizal fungi (AMF) 
and phosphate-solubilizing bacteria (PSBs), are cost-e�ective, 
pollution-free, renewable, and safe for crops [7]. Arbuscular 
mycorrhizae supplement nitrate and phosphate ions along with 
other metal ions within the rhizosphere [8]. Phosphate 
solubilizing bacteria unlock the phosphate from the complex 
soil composites and solubilize them with the help of phytase 
enzyme, while AM fungi besides facilitating critical minerals 

modify host root architecture. �ese biofertilizers also secrete 
phytohormones in the host rhizosphere and protect them 
from soil borne pathogens [7,8]. Zinc plays a functional role in 
many physiological processes, in biochemical reactions, such 
as metalloenzymes [3,9], in the biosynthesis of proteins and 
chlorophyll, and in immune responses in animal systems [10]. 
Several metalloenzymes and biochemical reactions require Zn 
as a cofactor in cell metabolism [11]. Among the critical 
elements, nitrogen is an important part of the functional and 
structural part, i.e., proteins, secondary metabolites, 
coenzymes, and other molecules; phosphorus has a major role 
in nucleotide biosynthesis and energy transactions and 
signaling, while potassium regulates cell osmolarity and ion 
exchange [12]. Zinc de�ciency in crops is common and o�en 
represented as zinc hunger [13].

 In part, Zn hunger is prevalent due to the plant’s ine�cacy 
of absorbing and translocating it [14] or soil de�ciency [13]; 
thus, Zn fertilization improves the production and quality of 
produce in several crop plants. �erefore, to mitigate issues 
such as the limited availability of soil nutrients, high rates of 
loss of soil-applied fertilizers, and constraints on nutrient 
delivery to plant organs due to environmental conditions 

during critical growth stages. Foliar fertilization for sustainable 
crop management has recently been well-addressed [15]. 
Fertilization through foliar spray has been proven to alleviate 
micronutrient de�ciencies, reduce toxicity, and avoid 
fertilizer-related pollution [16-19]. Zn-induced phytotoxicity 
can directly reduce photosynthesis [20] or can create nutritional 
imbalance by interacting with other nutrients [21].

 To unleash the full potential of plant performance, 
nanoparticle fertilizer represents a new and e�ective technique 
of nutrient delivery. �is is crucial for creating more sustainable 
crop systems globally [22,23]. Nanoparticles are de�ned as 
particles with a size of less than 100 nm in at least one 
dimension [24]. Improvements in seed germination, seedling 
growth, biomass, total nitrogen content, protein and sugar 
contents, photosynthetic e�ciency, and nutrient uptake are all 
documented as positive impacts of nanoparticles (NPs) on plant 
growth in crops such as cucumber, mung, spinach, wheat, and 
tomato [25-29]. Research shows that NPs can enter plant tissues 
and then move inside a plant’s body systemically [30-32]. 
Among the di�erent NPs used, ZnO NPs are currently the 
fourth most widely used in the world [33]. Due to their unique 
characteristics compared to conventional Zn fertilizers, ZnO 
NPs can also serve as cutting-edge Zn fertilizers. Uncertainty 
exists regarding the process through which ZnO NPs enter 
plants. Studies have demonstrated that foliar ZnO NP and 
ZnSO4 spraying on wheat increased the Zn content in grains 
while leaving no traces of ZnO NP in them [29]. With slower 
delivery of micronutrients and a reduced risk of soil pollution 
and other environmental hazards compared to applying 
chemical fertilizers directly to the soil, nanoscale fertilization 
may be able to prevent the symptoms of phytotoxicity in plants 
[34]. In addition, nanoscale fertilizer application requires a 
lesser amount of fertilizer than conventional ones used through 
soil [35]. Even in stressed regimes, the use of nanofertilizers has 
been proven to have positive impacts on plant growth compared 
to normal  conditions [32,35-40]. However, whether it is a nano 
application, these e�ects depend on concentration.

 �e present research work is based on the hypothesis that 
foliar spraying of ZnO NPs or application of biofertilizers such 
as VAM or AMF and PSBs are more e�cient and promote plant 
growth better than generally used chemical fertilizer 
supplementation like nitrogen (N), phosphorus (P) and 
supplementation with zinc (Zn).

 �erefore, the present study aimed to compare the impacts 
of various soil-applied chemical fertilizers, such as N, P, Zn, 
foliar spray of ZnO NPs, and soil-applied bio-fertilizers such as 
phosphate solubilizing bacteria (PSBs) and arbuscular 
mycorrhizal fungi (AMF), on the growth and biochemical 
responses of mustard cultivars.

Materials and Methods
Experimental site and design
�e present experiment was performed in the Botany 
Department of Tilakdhari College, Jaunpur, state Uttar Pradesh 
(25° 73’ N latitude, 82°68’ E longitude at an elevation of 96 m 
above mean sea level). �e 25 × 25 cm earthen pots were �lled 
with 3 kg of �eld soil with the properties given in Table 1. �e 
recommended dose of fertilizers was mixed with the soil 
present in the pot. �e experiment was conducted under 
ambient environmental conditions in September-February 
2020.

 Pots were placed in a randomized completely block design 
(RCBD) where the experiment consisted of two factors and �ve 
replicates (2×7×5). �rst factor is two varieties of Brassica juncea 
(L.). �e second factor included seven levels of fertilizer 
treatments (control, ZnO NPs, Zn, N, P, PSB, and AMF) and �ve 
replicates for each treatment randomly distributed in block 
(RBD). �e total experimental units were 70(2×7×5=70).

Materials and experimental treatment plan
�e authentic seeds of Brassica juncea (L.) Czern and Coss cv. 
Alankar and Rohini were selected based on previous 
experiments and were procured from the National Seed 
Corporation Ltd., New Delhi, India. �e cultural strains of 
biofertilizers (Glomus intraradices) inoculum and PSB 
Pseudomonas aeruginosa) were procured from the Agriculture 
Department Seed Distribution Unit, District Agriculture O�ce, 
Quarsi Road, Aligarh. �e nanoparticles (ZnO-NPs) were 
purchased from Sigma-Aldrich Chemicals Pvt. Ltd. India. 100 
mM stock solution of ZnO-NPs was prepared by dissolving its 
required amount in 10 ml DDW in a 100 ml volumetric �ask, 
and making up total volume 100 ml by adding DDW. �e 
working concentrations of NPs were prepared by diluting this 
stock solution of ZnO-NPs as per requirement.

 Healthy, uniform-sized seeds were surface sterilized with a 
0.01% solution of mercuric chloride for 5 min to disinfect from 
surface pathogens and then washed repeatedly with double 
distilled water (DDW). To check the percent germination of 
seeds, a germination test was also conducted. Seeds of two 
mustard varieties, Alankar and Rohini, were sown in pot soils. 
�e soil analysis was conducted before the experiment 
presented in Table 1. Eight seeds per pot were sown and then 
thinned to three plants per pot one week a�er germination, 
selecting robust growing similar plants. 

 Among the six treatments (excluding control) of plants, 
three sets were maintained for the two mustard varieties. Five 
pots for each treatment were maintained as replicates (n=5). 
Mustard plants were irrigated with tap water as needed (Figure 1).
1. �e �rst set of plants was foliar sprayed with ZnO NPs (4 

millimoles aqueous solution).
2. For the next two di�erent sets, AM fungus and PSB were 

applied. Fi�y grams of Rhode grass cultured AM fungus; 
Glomus intraradices inoculum, was added to the soil around 
the seed to provide 500 IP (infective propagules) per pot. As 
a PSB, a suspension culture of Pseudomonas aeruginosa was 
used for the treatment of seeds. One milliliter of nutrient 
broth (Mannitol 10g, Yeast extract 1.0g, K2HPO4 0.5g, 

MgSO4.7H2O 0.2g, NaCl 0.1g per liter of DDW) suspension 
contained approximately 1.5×109 cfu per ml of media. Seeds 
were coated with this suspension culture and dried in a cool 
shady place before sowing. 

Figure 1. Treatment plan of the present work on two mustard varieties.
*Taking field soil per hectare (~36,00,000 kg), bulk density of soil (1.2 t/m3), and layer depth of 0.3 m, the following formula was used.
Nutrient requirement = 100/Nutrient content of fertilizer (%) × Recommended dose

3. For three di�erent sets, N, P, and Zn were amended in the 
pot soil as per recommended doses of 120, 60, and 25 kg/ha 
taking urea, single superphosphate, and ZnSO4 as fertilizers. 
�e fertilizer requirement per kg pot soil was calculated* as 
72, 104, and 19 mg, respectively.

Methodology
At 60 days a�er sowing (DAS), the plants were sampled to study 
the following growth features.

Growth analysis
�e root and shoot lengths of the two varieties were measured 
using a meter scale. �e ratio of the shoot by root length was 
calculated by dividing the lengths of the two. �e fresh and dry 
mass of roots and shoots was measured with an electronic 
balance. To analyze the dry mass, the uprooted plants (roots and 
shoots) were placed in an oven at 80°C for 72 h and wrapped in 
butter paper. �e dried plants were then weighed to record plant 
dry mass. �e leaf area of randomly selected leaves from each 
variety was determined by the graph paper method of Pandey 
and Singh [41].

Total chlorophyll and proline content in leaves
�e leaf ’s total chlorophyll content was estimated in �nely cut 
fresh leaves following the method of Mackinney [42]. �e leaf 
proline content in fresh tissue was determined by following the 
method of Bates et al. [43].

Activity of Carbonic anhydrase (CA) and Nitrate 
reductase (NR) enzyme
Carbonic anhydrase activity (CA, E.C. 4.2.1.1) and nitrate 
reductase activity (NR, E.C. 1.6.6.1) were determined by 
following Dwivedi and Randhawa [13] and Jaworski [44] in 
fresh leaf samples.

Statistical analysis
�e experiment was conducted according to a simple 
randomized block design (SRBD). Each treatment was 
replicated �ve times (n=5), and three plants per pot were 
maintained where each pot was considered a replicate. 
Treatment means were compared by analysis of variance using 
R ver. 3.1.0 for Windows. �e least signi�cant di�erence (LSD) 
between treatment means was calculated at a 5% probability 
level (p< 0.05). 

Results
Growth parameters
Most of the (bio)fertilizer treatments (ZnO NPs, Zn, N, P, PSBs 
or AMF) promoted the growth (length, fresh mass, dry mass of 
root and shoot and leaf area) parameters in both varieties in a 
treatment-dependent manner at 60 DAS (Figure 2). However, 
the maximum stimulation of most of the growth parameters is 
achieved by ZnO NPs followed by either PSB or AMF. However, 
the Alankar variety outperformed the treatment here. �e root 
dry mass of Alankar for ZnO NPs, PSB, and AMF was 88%, 
62%, and 86%, respectively, while for shoot dry mass it was 83%, 
72%, and 80%, compared to control plants. For the same 
treatments leaf area improvement of Alankar was 35%, 28%, 
and 34%, and for Rohini, it was 33%, 23%, and 28%, 
respectively. �e ratio of the shoot by root length showed 
di�erent responses for the treatments.

Total chlorophyll content in leaves
�e total chlorophyll content (Figure 3A) in leaves increased 
signi�cantly (p≤0.05) when the two varieties were foliar sprayed 
with ZnO NPs. Alankar registered a 28% increase, while Rohini 
re�ected a 19% increase. �e PSB and AMF treatments also 

signi�cantly (p≤0.05) increased the leaf chlorophyll contents by 
28% and 34% in Alankar and 10% and 16% in Rohini, 
respectively, compared to the control plants. No signi�cant (p≤
0.05) increase in leaf chlorophyll level was noticed against 
soil-mediated N, P, and Zn treatments in the two varieties of 
mustard. 

Proline content in leaves
A signi�cant (p≤0.05) increase in leaf proline content (Figure 
3B) was recorded against the leaf-sprayed ZnO NPs and the 
soil-mediated two biofertilizers (PSB and AMF/VAM) and 
nitrogen treatment in the Alankar and Rohini varieties of 
mustard plants. �e data indicated that proline accumulation 
was higher in Alankar than in Rohini against the given 
treatments. For the above treatments, the increase was 46%, 
39%, 42%, and 37%, respectively, for Alankar. For Rohini, the 
increase was lesser, and in the order of ZnO 
NPs>AMF>PSB>N, an insigni�cant increase of proline was 
registered for the treatments of soil-mediated Zn and P 
recorded compared to control plants in the two varieties.

Nitrate reductase (NR) and carbonic anhydrase (CA) 
activity
�e two mustard varieties; Alankar and Rohini, showed a 
signi�cant (p≤0.05) increase in NR and CA activity (Figure 3C 
and 3D) compared to most of the treatments. �e increase in 

the activity of these enzymes against all the treatments of 
chemicals and biofertilizers was higher in Rohini than in 
Alankar. For NR activity, ZnO NP was followed by Zn and N 
treatments in the two varieties, and for CA, it was followed by 
AMF/VAM and PSBs, respectively. For NR activity, the increase 
against ZnO NP treatment was 140% and 111% in Alankar. For 
the Zn and N treatments, however, the increase in NR activity 
was 99% and 72%, respectively, compared to the control plants. 
�e CA activity was 79% and 58% for the two varieties, Alankar 
and Rohini, respectively. 

Discussion
Our agricultural system depends on the supplementation of 
primary nutrients (such as N, P, and K) to maximize crop 
output and support modern agriculture [45]. Mineral ion 
uptake properties show variation among plant species and 
cultivars [46]. In mustard plants, the growing seeds and leaves 
compete for nitrogen, and the size of the nitrogen pool in the 
vegetative sections largely determines seed set, seed growth, and 

�nal seed production [47,48]. Nitrogen supply in�uences 
several growth parameters, produces more robust growth and 
development, and increases plant height, number of �owering 
branches, total plant weight, and leaf area, all of which 
cumulatively enhance the yield output [49,50]. Brassica growth 
and yield improved with the application of 100–130 kg/ha 
nitrogen, while yield also increased at the same rate with the 
application of phosphorus [51-54]. However, this demand is 
typically higher in arid and semiarid environments [55,56]. As 
stated above, phosphorus has a greater impact on yield than 
nitrogen and potassium. Phosphorus is a component of nucleic 
acids, cell signaling, and membrane phospholipids. It also plays 
a role in energy metabolism, cell division, and the formation of 
several coenzymes, including ATP, NAD(P)H, and GTP [57]. P 
de�ciency manifests as visible purplish pigmentation on leaves, 
young, stunted stems, early leaf shedding, and reduced seed 
output [58,59]. Single, double, and triple superphosphate (SSP, 
DSP, TSP), ammonium phosphate, dicalcium phosphate, basic 
slag, calcium meta-phosphate, rock phosphate, bone meal, etc., 
are the main sources of plant phosphorus [60]. �e application 
of chemical fertilizers also poses a serious threat to nitrogen and 
other chemical pollution in soil and water bodies, leading to 
eutrophication [61]. To avoid nitrogen pollution and 
eutrophication of nutrients in water bodies, the application of 
nanosized nutrients, such as nanofertilizers, nanobiochar, and 
essential element nanoparticles, through foliar spraying has 
become a trend in recent studies because it minimizes the loss 
of nutrients and allows them to be e�ciently absorbed by plant 
leaves due to their nano size, which saves the environment and 
expenses of farmers [18, 62].

 �e �ndings of the present study demonstrated that the use 
of ZnO NPs improved the growth of two varieties, including the 
root and shoot length, their ratio, fresh and dry weight, and leaf 
area (Figure 2). Signi�cant di�erences were seen in the foliar 
delivery of ZnO NPs compared to soil amendment of Zn, which 
may be a cost-e�ective method for providing nutrients to the 
plants. A�er nitrogen, phosphorus, and potassium, Zn is 
regarded as the nutrient that limits yield the most both globally 
and in Indian soils [63]. According to estimates, 36.5% of 
Indian soils lack Zn [64]. While it is normal practice in modern 
agriculture to add fertilizers to complement natural soil fertility, 
temperate and tropical soils frequently continue to be low in 
micronutrients, particularly Zn [4,65]. Two forms of Zn 
in�uenced mustard growth di�erently. In general, foliar 
treatments with 4 mM ZnO NPs brought signi�cant 
improvement in growth parameters compared to Zn, N, or P 
given through soil and control plants. �e growth promotion 
was even higher than that with biofertilizers, PSBs, and AM 
fungi. Zinc from ZnO NPs can accumulate in the leaves through 
foliar feeding, making these NPs potentially useful sources of 
Zn for plants to employ in metabolic processes [66,67]. 
According to a recent study by [68], the predominant channel 
for wheat and sun�ower (Helianthus annuus L.) to absorb ZnO 
NPs under experimental conditions was through the leaf 
cuticle. In addition, ZnO NPs are used as nanofertilizers, which 
may be a more e�ective and slow-releasing source of Zn than 
conventional fertilizers or other sources of Zn [66,69,70]. 
According to a study by [71], applying ZnO NPs to the soil at 
various concentrations increased the Zn content of wheat 
tissues under normal or water-stress conditions. A�erwards, 
Adrees et al. [72] demonstrated that foliar exposure to ZnO NPs 
enhanced wheat development through foliar application. �e 

larger weights of the plants may be a factor in the enhanced 
availability of Zn as NPs compared to Zn applied to the soil. �e 
mustard plants’ growth and antioxidant enzyme activities were 
improved when ZnO NPs were sprayed [73]. �e intensi�cation 
of the metabolism aided by Zn is what causes the rise in dry 
mass. Enzymes, including dehydrogenases, aldolases, 
isomerases, transphosphorylases, and RNA and DNA 
polymerases, all require zinc to function [74]. Moreover, it 
contributes to tryptophan production, cell division, membrane 
structure maintenance, and photosynthesis and functions as a 
regulatory cofactor in protein synthesis [3,9]. Several species 
have been the subject of ZnO NPs experiments, and the overall 
bene�cial interactions have been previously characterized 
[35,74-76]. An increase in the FW and DW of seedlings growing 
in the presence of ZnO NPs was observed in earlier studies [77]. 
Reduced growth and plant biomass, restriction of cell 
elongation and division, wilting, curling, and rolling of young 
leaves, chlorotic and necrotic leaf tips, and suppression of root 
growth are all signs of Zn toxicity [78,79]. According to the 
�ndings of Rossi et al. [80] on co�ee plants treated with ZnO 
NPs, the photosynthetic apparatus was enhanced. In the present 
study, positive interactions were found between ZnO NPs and 
the net carbon assimilation rate and stomatal conductance. 

 In the present study, the e�cacy of treatments followed the 
pattern of ZnO NPs>AMF>PSBs>N and increased the leaf 
chlorophyll level, proline content, NR, and CA activity (Figure 
3 A-D). Nitrogen is a key nutrient component that gives crops 
their lush green color by increasing the amount of chlorophyll 
in the leaves and boosts biomass by increasing carbon �xation. 
However, depending on factors such as soil type, climate, 
management practices, when nitrogen is applied, cultivars, etc., 
nitrogen fertilizer needs can vary greatly [81]. Zn is a cofactor of 
carbonic anhydrase, which raises the amount of CO2 in the 
chloroplast and, as a result, also increases the ability of the 
Rubisco enzyme to carboxylate [82]. Di�erent macro-and 
micronutrient uptake can be a�ected by zinc’s e�ects on 
absorption [83,84]. Zn typically causes severe Fe de�ciency 
chlorosis in dicots on acidic soils. Crops such as lettuce, 
mustard, and beet are particularly vulnerable to too much soil 
Zn [85]. Zn transport and uptake by leaves were also 
investigated. Typically, ZnO NPs enter the leaf system through 
wounds, hydathodes, cuticle penetration, and stomata [10]. 
�is is evident from the data, which reveal that ZnO NPs 
markedly increased Zn levels in the leaf, while ZnSO4 did not 
signi�cantly accumulate when compared to the control. It 
results from the e�ects of adding P and other minerals, as well 
as phytohormones secreted by PSBs and AM fungi in the root 
zone. Positive e�ects of ZnO NPs were also studied on the seed 
germination and vegetative growth in di�erent crops of Arachis 
hypogea [86], Vigna radiata [87,88], Cicer arietinum [89], 
Glycine max [90], Helianthus annuus [91], Lycopersicon 
esculentum [92], Sesamum indicum [93], Brassica nigra [94] and 
Brassica juncea [95]. PGPR, such as PSB, proves useful in 
enhancing crop productivity by making nutrients more 
bioavailable in the soil with chemical secretion in the 
rhizosphere [96]. Alone and combination of AM fungi with 
biocontrol fungi or nanoparticles also prove e�ective in 
increasing the crop productivity in plants by increasing the 
phosphorus and other nutrients available in the soil by releasing 
chemicals in the soil that change the pH and amount of 
available organic matter content in the soil [97-99]. 
Combinations of PGPR and AMF improved the crop 

productivity in various plants and also helped to manage 
growth under stress conditions [100-103]. Although the 
interaction of Glomus species with mustard plants is not 
common, recent studies clearly show that it helps the plants to 
increase their resistance against pathogens and increase crop 
productivity by regulating enzymatic activities in plants and 
increasing the amount of nutrients and organic matter in the 
soil [104-106]. 

Conclusions 
Foliar exposure to ZnO NPs may be thought of as both an 
e�cient and di�erent method to increase productivity 
compared to other treatments. Nanoparticles have microscopic 
size and large surface area, which help maximize their uptake 
and translocation as nutrients in plants via foliar spray. As a 
result, ZnO NPs had more favorable e�ects on plant growth, 
morphology, development, physiology, and metabolism than 
traditional Zn salt because nanoparticles induce the genes 
involved in nutrient assimilation pathways. It may also be 
crucial to research how ZnO NPs a�ect other nutrients 
necessary for plant health as well as the general ecology of the 
rhizosphere. When compared to chemical fertilizer applications 
of P or even N, biofertilizers such as AMF/VAM and PSBs are 
also preferable because their chemical activity solubilizes and 
increases the bioavailability of nutrients in the soil, ultimately 
enhancing the growth of the treated plants. Further research is 
required to grow di�erent crop species in the �eld under diverse 
agroclimatic circumstances to determine the cost-e�ectiveness 
and adaptability of foliar ZnO NP exposure.

 However, a future aspect of this research is to determine 
the growth and yield responses of crops upon exposure to the 
combination of nanoparticles and biofertilizers. 
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Mustard (Brassica juncea L.) is one of the important oilseed 
crops grown in the Rabi (winter) season and contributes to 25% 
of the oilseed economy of India [1,2]. �e use of chemical 
fertilizers in arable soil is a routine practice in modern 
agriculture to supplement the depleting nutrients from natural 
soil fertility, among them nitrogen, phosphorus, potassium 
(NPK) and zinc (Zn) are more common [3,4]. Mustard varieties 
also respond to chemical fertilizers, particularly N and P. �e 
recommended dose of chemical fertilizers is crop-speci�c; 
excess or less application may lead to suboptimal production of 
lethal e�ects. Increased population growth and demand for 
food supply required higher use of chemical fertilizers, a costly 
input [5]. Additionally, excess use of these fertilizers polluted all 
three spheres of the environment [6]. Potential substitutes, 
biofertilizers, including arbuscular mycorrhizal fungi (AMF) 
and phosphate-solubilizing bacteria (PSBs), are cost-e�ective, 
pollution-free, renewable, and safe for crops [7]. Arbuscular 
mycorrhizae supplement nitrate and phosphate ions along with 
other metal ions within the rhizosphere [8]. Phosphate 
solubilizing bacteria unlock the phosphate from the complex 
soil composites and solubilize them with the help of phytase 
enzyme, while AM fungi besides facilitating critical minerals 

modify host root architecture. �ese biofertilizers also secrete 
phytohormones in the host rhizosphere and protect them 
from soil borne pathogens [7,8]. Zinc plays a functional role in 
many physiological processes, in biochemical reactions, such 
as metalloenzymes [3,9], in the biosynthesis of proteins and 
chlorophyll, and in immune responses in animal systems [10]. 
Several metalloenzymes and biochemical reactions require Zn 
as a cofactor in cell metabolism [11]. Among the critical 
elements, nitrogen is an important part of the functional and 
structural part, i.e., proteins, secondary metabolites, 
coenzymes, and other molecules; phosphorus has a major role 
in nucleotide biosynthesis and energy transactions and 
signaling, while potassium regulates cell osmolarity and ion 
exchange [12]. Zinc de�ciency in crops is common and o�en 
represented as zinc hunger [13].

 In part, Zn hunger is prevalent due to the plant’s ine�cacy 
of absorbing and translocating it [14] or soil de�ciency [13]; 
thus, Zn fertilization improves the production and quality of 
produce in several crop plants. �erefore, to mitigate issues 
such as the limited availability of soil nutrients, high rates of 
loss of soil-applied fertilizers, and constraints on nutrient 
delivery to plant organs due to environmental conditions 

during critical growth stages. Foliar fertilization for sustainable 
crop management has recently been well-addressed [15]. 
Fertilization through foliar spray has been proven to alleviate 
micronutrient de�ciencies, reduce toxicity, and avoid 
fertilizer-related pollution [16-19]. Zn-induced phytotoxicity 
can directly reduce photosynthesis [20] or can create nutritional 
imbalance by interacting with other nutrients [21].

 To unleash the full potential of plant performance, 
nanoparticle fertilizer represents a new and e�ective technique 
of nutrient delivery. �is is crucial for creating more sustainable 
crop systems globally [22,23]. Nanoparticles are de�ned as 
particles with a size of less than 100 nm in at least one 
dimension [24]. Improvements in seed germination, seedling 
growth, biomass, total nitrogen content, protein and sugar 
contents, photosynthetic e�ciency, and nutrient uptake are all 
documented as positive impacts of nanoparticles (NPs) on plant 
growth in crops such as cucumber, mung, spinach, wheat, and 
tomato [25-29]. Research shows that NPs can enter plant tissues 
and then move inside a plant’s body systemically [30-32]. 
Among the di�erent NPs used, ZnO NPs are currently the 
fourth most widely used in the world [33]. Due to their unique 
characteristics compared to conventional Zn fertilizers, ZnO 
NPs can also serve as cutting-edge Zn fertilizers. Uncertainty 
exists regarding the process through which ZnO NPs enter 
plants. Studies have demonstrated that foliar ZnO NP and 
ZnSO4 spraying on wheat increased the Zn content in grains 
while leaving no traces of ZnO NP in them [29]. With slower 
delivery of micronutrients and a reduced risk of soil pollution 
and other environmental hazards compared to applying 
chemical fertilizers directly to the soil, nanoscale fertilization 
may be able to prevent the symptoms of phytotoxicity in plants 
[34]. In addition, nanoscale fertilizer application requires a 
lesser amount of fertilizer than conventional ones used through 
soil [35]. Even in stressed regimes, the use of nanofertilizers has 
been proven to have positive impacts on plant growth compared 
to normal  conditions [32,35-40]. However, whether it is a nano 
application, these e�ects depend on concentration.

 �e present research work is based on the hypothesis that 
foliar spraying of ZnO NPs or application of biofertilizers such 
as VAM or AMF and PSBs are more e�cient and promote plant 
growth better than generally used chemical fertilizer 
supplementation like nitrogen (N), phosphorus (P) and 
supplementation with zinc (Zn).

 �erefore, the present study aimed to compare the impacts 
of various soil-applied chemical fertilizers, such as N, P, Zn, 
foliar spray of ZnO NPs, and soil-applied bio-fertilizers such as 
phosphate solubilizing bacteria (PSBs) and arbuscular 
mycorrhizal fungi (AMF), on the growth and biochemical 
responses of mustard cultivars.

Materials and Methods
Experimental site and design
�e present experiment was performed in the Botany 
Department of Tilakdhari College, Jaunpur, state Uttar Pradesh 
(25° 73’ N latitude, 82°68’ E longitude at an elevation of 96 m 
above mean sea level). �e 25 × 25 cm earthen pots were �lled 
with 3 kg of �eld soil with the properties given in Table 1. �e 
recommended dose of fertilizers was mixed with the soil 
present in the pot. �e experiment was conducted under 
ambient environmental conditions in September-February 
2020.

 Pots were placed in a randomized completely block design 
(RCBD) where the experiment consisted of two factors and �ve 
replicates (2×7×5). �rst factor is two varieties of Brassica juncea 
(L.). �e second factor included seven levels of fertilizer 
treatments (control, ZnO NPs, Zn, N, P, PSB, and AMF) and �ve 
replicates for each treatment randomly distributed in block 
(RBD). �e total experimental units were 70(2×7×5=70).

Materials and experimental treatment plan
�e authentic seeds of Brassica juncea (L.) Czern and Coss cv. 
Alankar and Rohini were selected based on previous 
experiments and were procured from the National Seed 
Corporation Ltd., New Delhi, India. �e cultural strains of 
biofertilizers (Glomus intraradices) inoculum and PSB 
Pseudomonas aeruginosa) were procured from the Agriculture 
Department Seed Distribution Unit, District Agriculture O�ce, 
Quarsi Road, Aligarh. �e nanoparticles (ZnO-NPs) were 
purchased from Sigma-Aldrich Chemicals Pvt. Ltd. India. 100 
mM stock solution of ZnO-NPs was prepared by dissolving its 
required amount in 10 ml DDW in a 100 ml volumetric �ask, 
and making up total volume 100 ml by adding DDW. �e 
working concentrations of NPs were prepared by diluting this 
stock solution of ZnO-NPs as per requirement.

 Healthy, uniform-sized seeds were surface sterilized with a 
0.01% solution of mercuric chloride for 5 min to disinfect from 
surface pathogens and then washed repeatedly with double 
distilled water (DDW). To check the percent germination of 
seeds, a germination test was also conducted. Seeds of two 
mustard varieties, Alankar and Rohini, were sown in pot soils. 
�e soil analysis was conducted before the experiment 
presented in Table 1. Eight seeds per pot were sown and then 
thinned to three plants per pot one week a�er germination, 
selecting robust growing similar plants. 

 Among the six treatments (excluding control) of plants, 
three sets were maintained for the two mustard varieties. Five 
pots for each treatment were maintained as replicates (n=5). 
Mustard plants were irrigated with tap water as needed (Figure 1).
1. �e �rst set of plants was foliar sprayed with ZnO NPs (4 

millimoles aqueous solution).
2. For the next two di�erent sets, AM fungus and PSB were 

applied. Fi�y grams of Rhode grass cultured AM fungus; 
Glomus intraradices inoculum, was added to the soil around 
the seed to provide 500 IP (infective propagules) per pot. As 
a PSB, a suspension culture of Pseudomonas aeruginosa was 
used for the treatment of seeds. One milliliter of nutrient 
broth (Mannitol 10g, Yeast extract 1.0g, K2HPO4 0.5g, 

MgSO4.7H2O 0.2g, NaCl 0.1g per liter of DDW) suspension 
contained approximately 1.5×109 cfu per ml of media. Seeds 
were coated with this suspension culture and dried in a cool 
shady place before sowing. 

3. For three di�erent sets, N, P, and Zn were amended in the 
pot soil as per recommended doses of 120, 60, and 25 kg/ha 
taking urea, single superphosphate, and ZnSO4 as fertilizers. 
�e fertilizer requirement per kg pot soil was calculated* as 
72, 104, and 19 mg, respectively.

Methodology
At 60 days a�er sowing (DAS), the plants were sampled to study 
the following growth features.

Growth analysis
�e root and shoot lengths of the two varieties were measured 
using a meter scale. �e ratio of the shoot by root length was 
calculated by dividing the lengths of the two. �e fresh and dry 
mass of roots and shoots was measured with an electronic 
balance. To analyze the dry mass, the uprooted plants (roots and 
shoots) were placed in an oven at 80°C for 72 h and wrapped in 
butter paper. �e dried plants were then weighed to record plant 
dry mass. �e leaf area of randomly selected leaves from each 
variety was determined by the graph paper method of Pandey 
and Singh [41].

Total chlorophyll and proline content in leaves
�e leaf ’s total chlorophyll content was estimated in �nely cut 
fresh leaves following the method of Mackinney [42]. �e leaf 
proline content in fresh tissue was determined by following the 
method of Bates et al. [43].

Activity of Carbonic anhydrase (CA) and Nitrate 
reductase (NR) enzyme
Carbonic anhydrase activity (CA, E.C. 4.2.1.1) and nitrate 
reductase activity (NR, E.C. 1.6.6.1) were determined by 
following Dwivedi and Randhawa [13] and Jaworski [44] in 
fresh leaf samples.

Statistical analysis
�e experiment was conducted according to a simple 
randomized block design (SRBD). Each treatment was 
replicated �ve times (n=5), and three plants per pot were 
maintained where each pot was considered a replicate. 
Treatment means were compared by analysis of variance using 
R ver. 3.1.0 for Windows. �e least signi�cant di�erence (LSD) 
between treatment means was calculated at a 5% probability 
level (p< 0.05). 

Results
Growth parameters
Most of the (bio)fertilizer treatments (ZnO NPs, Zn, N, P, PSBs 
or AMF) promoted the growth (length, fresh mass, dry mass of 
root and shoot and leaf area) parameters in both varieties in a 
treatment-dependent manner at 60 DAS (Figure 2). However, 
the maximum stimulation of most of the growth parameters is 
achieved by ZnO NPs followed by either PSB or AMF. However, 
the Alankar variety outperformed the treatment here. �e root 
dry mass of Alankar for ZnO NPs, PSB, and AMF was 88%, 
62%, and 86%, respectively, while for shoot dry mass it was 83%, 
72%, and 80%, compared to control plants. For the same 
treatments leaf area improvement of Alankar was 35%, 28%, 
and 34%, and for Rohini, it was 33%, 23%, and 28%, 
respectively. �e ratio of the shoot by root length showed 
di�erent responses for the treatments.

Figure 2. Effect of foliar and soil mediated chemical and biofertilizers (Zn, Nitrogen, PSB, and AM) on two different mustard varieties Brassica 
juncea var. Alankar and Rohini on (A, B) lengths (cm), (C, D) fresh masses (g), (E, F) dry masses of roots and shoots, (G) leaf area, and (H) 
shoot/root dry mass ratio at 60 days after sowing (DAS). Data are presented as the treatment mean ± standard error (n = 5). The different letters 
above the bars show that data are significantly different at p ≤0.05 by Duncan’s multiple range test (DMRT).

Total chlorophyll content in leaves
�e total chlorophyll content (Figure 3A) in leaves increased 
signi�cantly (p≤0.05) when the two varieties were foliar sprayed 
with ZnO NPs. Alankar registered a 28% increase, while Rohini 
re�ected a 19% increase. �e PSB and AMF treatments also 

signi�cantly (p≤0.05) increased the leaf chlorophyll contents by 
28% and 34% in Alankar and 10% and 16% in Rohini, 
respectively, compared to the control plants. No signi�cant (p≤
0.05) increase in leaf chlorophyll level was noticed against 
soil-mediated N, P, and Zn treatments in the two varieties of 
mustard. 

Proline content in leaves
A signi�cant (p≤0.05) increase in leaf proline content (Figure 
3B) was recorded against the leaf-sprayed ZnO NPs and the 
soil-mediated two biofertilizers (PSB and AMF/VAM) and 
nitrogen treatment in the Alankar and Rohini varieties of 
mustard plants. �e data indicated that proline accumulation 
was higher in Alankar than in Rohini against the given 
treatments. For the above treatments, the increase was 46%, 
39%, 42%, and 37%, respectively, for Alankar. For Rohini, the 
increase was lesser, and in the order of ZnO 
NPs>AMF>PSB>N, an insigni�cant increase of proline was 
registered for the treatments of soil-mediated Zn and P 
recorded compared to control plants in the two varieties.

Nitrate reductase (NR) and carbonic anhydrase (CA) 
activity
�e two mustard varieties; Alankar and Rohini, showed a 
signi�cant (p≤0.05) increase in NR and CA activity (Figure 3C 
and 3D) compared to most of the treatments. �e increase in 

the activity of these enzymes against all the treatments of 
chemicals and biofertilizers was higher in Rohini than in 
Alankar. For NR activity, ZnO NP was followed by Zn and N 
treatments in the two varieties, and for CA, it was followed by 
AMF/VAM and PSBs, respectively. For NR activity, the increase 
against ZnO NP treatment was 140% and 111% in Alankar. For 
the Zn and N treatments, however, the increase in NR activity 
was 99% and 72%, respectively, compared to the control plants. 
�e CA activity was 79% and 58% for the two varieties, Alankar 
and Rohini, respectively. 

Discussion
Our agricultural system depends on the supplementation of 
primary nutrients (such as N, P, and K) to maximize crop 
output and support modern agriculture [45]. Mineral ion 
uptake properties show variation among plant species and 
cultivars [46]. In mustard plants, the growing seeds and leaves 
compete for nitrogen, and the size of the nitrogen pool in the 
vegetative sections largely determines seed set, seed growth, and 

�nal seed production [47,48]. Nitrogen supply in�uences 
several growth parameters, produces more robust growth and 
development, and increases plant height, number of �owering 
branches, total plant weight, and leaf area, all of which 
cumulatively enhance the yield output [49,50]. Brassica growth 
and yield improved with the application of 100–130 kg/ha 
nitrogen, while yield also increased at the same rate with the 
application of phosphorus [51-54]. However, this demand is 
typically higher in arid and semiarid environments [55,56]. As 
stated above, phosphorus has a greater impact on yield than 
nitrogen and potassium. Phosphorus is a component of nucleic 
acids, cell signaling, and membrane phospholipids. It also plays 
a role in energy metabolism, cell division, and the formation of 
several coenzymes, including ATP, NAD(P)H, and GTP [57]. P 
de�ciency manifests as visible purplish pigmentation on leaves, 
young, stunted stems, early leaf shedding, and reduced seed 
output [58,59]. Single, double, and triple superphosphate (SSP, 
DSP, TSP), ammonium phosphate, dicalcium phosphate, basic 
slag, calcium meta-phosphate, rock phosphate, bone meal, etc., 
are the main sources of plant phosphorus [60]. �e application 
of chemical fertilizers also poses a serious threat to nitrogen and 
other chemical pollution in soil and water bodies, leading to 
eutrophication [61]. To avoid nitrogen pollution and 
eutrophication of nutrients in water bodies, the application of 
nanosized nutrients, such as nanofertilizers, nanobiochar, and 
essential element nanoparticles, through foliar spraying has 
become a trend in recent studies because it minimizes the loss 
of nutrients and allows them to be e�ciently absorbed by plant 
leaves due to their nano size, which saves the environment and 
expenses of farmers [18, 62].

 �e �ndings of the present study demonstrated that the use 
of ZnO NPs improved the growth of two varieties, including the 
root and shoot length, their ratio, fresh and dry weight, and leaf 
area (Figure 2). Signi�cant di�erences were seen in the foliar 
delivery of ZnO NPs compared to soil amendment of Zn, which 
may be a cost-e�ective method for providing nutrients to the 
plants. A�er nitrogen, phosphorus, and potassium, Zn is 
regarded as the nutrient that limits yield the most both globally 
and in Indian soils [63]. According to estimates, 36.5% of 
Indian soils lack Zn [64]. While it is normal practice in modern 
agriculture to add fertilizers to complement natural soil fertility, 
temperate and tropical soils frequently continue to be low in 
micronutrients, particularly Zn [4,65]. Two forms of Zn 
in�uenced mustard growth di�erently. In general, foliar 
treatments with 4 mM ZnO NPs brought signi�cant 
improvement in growth parameters compared to Zn, N, or P 
given through soil and control plants. �e growth promotion 
was even higher than that with biofertilizers, PSBs, and AM 
fungi. Zinc from ZnO NPs can accumulate in the leaves through 
foliar feeding, making these NPs potentially useful sources of 
Zn for plants to employ in metabolic processes [66,67]. 
According to a recent study by [68], the predominant channel 
for wheat and sun�ower (Helianthus annuus L.) to absorb ZnO 
NPs under experimental conditions was through the leaf 
cuticle. In addition, ZnO NPs are used as nanofertilizers, which 
may be a more e�ective and slow-releasing source of Zn than 
conventional fertilizers or other sources of Zn [66,69,70]. 
According to a study by [71], applying ZnO NPs to the soil at 
various concentrations increased the Zn content of wheat 
tissues under normal or water-stress conditions. A�erwards, 
Adrees et al. [72] demonstrated that foliar exposure to ZnO NPs 
enhanced wheat development through foliar application. �e 

larger weights of the plants may be a factor in the enhanced 
availability of Zn as NPs compared to Zn applied to the soil. �e 
mustard plants’ growth and antioxidant enzyme activities were 
improved when ZnO NPs were sprayed [73]. �e intensi�cation 
of the metabolism aided by Zn is what causes the rise in dry 
mass. Enzymes, including dehydrogenases, aldolases, 
isomerases, transphosphorylases, and RNA and DNA 
polymerases, all require zinc to function [74]. Moreover, it 
contributes to tryptophan production, cell division, membrane 
structure maintenance, and photosynthesis and functions as a 
regulatory cofactor in protein synthesis [3,9]. Several species 
have been the subject of ZnO NPs experiments, and the overall 
bene�cial interactions have been previously characterized 
[35,74-76]. An increase in the FW and DW of seedlings growing 
in the presence of ZnO NPs was observed in earlier studies [77]. 
Reduced growth and plant biomass, restriction of cell 
elongation and division, wilting, curling, and rolling of young 
leaves, chlorotic and necrotic leaf tips, and suppression of root 
growth are all signs of Zn toxicity [78,79]. According to the 
�ndings of Rossi et al. [80] on co�ee plants treated with ZnO 
NPs, the photosynthetic apparatus was enhanced. In the present 
study, positive interactions were found between ZnO NPs and 
the net carbon assimilation rate and stomatal conductance. 

 In the present study, the e�cacy of treatments followed the 
pattern of ZnO NPs>AMF>PSBs>N and increased the leaf 
chlorophyll level, proline content, NR, and CA activity (Figure 
3 A-D). Nitrogen is a key nutrient component that gives crops 
their lush green color by increasing the amount of chlorophyll 
in the leaves and boosts biomass by increasing carbon �xation. 
However, depending on factors such as soil type, climate, 
management practices, when nitrogen is applied, cultivars, etc., 
nitrogen fertilizer needs can vary greatly [81]. Zn is a cofactor of 
carbonic anhydrase, which raises the amount of CO2 in the 
chloroplast and, as a result, also increases the ability of the 
Rubisco enzyme to carboxylate [82]. Di�erent macro-and 
micronutrient uptake can be a�ected by zinc’s e�ects on 
absorption [83,84]. Zn typically causes severe Fe de�ciency 
chlorosis in dicots on acidic soils. Crops such as lettuce, 
mustard, and beet are particularly vulnerable to too much soil 
Zn [85]. Zn transport and uptake by leaves were also 
investigated. Typically, ZnO NPs enter the leaf system through 
wounds, hydathodes, cuticle penetration, and stomata [10]. 
�is is evident from the data, which reveal that ZnO NPs 
markedly increased Zn levels in the leaf, while ZnSO4 did not 
signi�cantly accumulate when compared to the control. It 
results from the e�ects of adding P and other minerals, as well 
as phytohormones secreted by PSBs and AM fungi in the root 
zone. Positive e�ects of ZnO NPs were also studied on the seed 
germination and vegetative growth in di�erent crops of Arachis 
hypogea [86], Vigna radiata [87,88], Cicer arietinum [89], 
Glycine max [90], Helianthus annuus [91], Lycopersicon 
esculentum [92], Sesamum indicum [93], Brassica nigra [94] and 
Brassica juncea [95]. PGPR, such as PSB, proves useful in 
enhancing crop productivity by making nutrients more 
bioavailable in the soil with chemical secretion in the 
rhizosphere [96]. Alone and combination of AM fungi with 
biocontrol fungi or nanoparticles also prove e�ective in 
increasing the crop productivity in plants by increasing the 
phosphorus and other nutrients available in the soil by releasing 
chemicals in the soil that change the pH and amount of 
available organic matter content in the soil [97-99]. 
Combinations of PGPR and AMF improved the crop 

productivity in various plants and also helped to manage 
growth under stress conditions [100-103]. Although the 
interaction of Glomus species with mustard plants is not 
common, recent studies clearly show that it helps the plants to 
increase their resistance against pathogens and increase crop 
productivity by regulating enzymatic activities in plants and 
increasing the amount of nutrients and organic matter in the 
soil [104-106]. 

Conclusions 
Foliar exposure to ZnO NPs may be thought of as both an 
e�cient and di�erent method to increase productivity 
compared to other treatments. Nanoparticles have microscopic 
size and large surface area, which help maximize their uptake 
and translocation as nutrients in plants via foliar spray. As a 
result, ZnO NPs had more favorable e�ects on plant growth, 
morphology, development, physiology, and metabolism than 
traditional Zn salt because nanoparticles induce the genes 
involved in nutrient assimilation pathways. It may also be 
crucial to research how ZnO NPs a�ect other nutrients 
necessary for plant health as well as the general ecology of the 
rhizosphere. When compared to chemical fertilizer applications 
of P or even N, biofertilizers such as AMF/VAM and PSBs are 
also preferable because their chemical activity solubilizes and 
increases the bioavailability of nutrients in the soil, ultimately 
enhancing the growth of the treated plants. Further research is 
required to grow di�erent crop species in the �eld under diverse 
agroclimatic circumstances to determine the cost-e�ectiveness 
and adaptability of foliar ZnO NP exposure.

 However, a future aspect of this research is to determine 
the growth and yield responses of crops upon exposure to the 
combination of nanoparticles and biofertilizers. 
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Mustard (Brassica juncea L.) is one of the important oilseed 
crops grown in the Rabi (winter) season and contributes to 25% 
of the oilseed economy of India [1,2]. �e use of chemical 
fertilizers in arable soil is a routine practice in modern 
agriculture to supplement the depleting nutrients from natural 
soil fertility, among them nitrogen, phosphorus, potassium 
(NPK) and zinc (Zn) are more common [3,4]. Mustard varieties 
also respond to chemical fertilizers, particularly N and P. �e 
recommended dose of chemical fertilizers is crop-speci�c; 
excess or less application may lead to suboptimal production of 
lethal e�ects. Increased population growth and demand for 
food supply required higher use of chemical fertilizers, a costly 
input [5]. Additionally, excess use of these fertilizers polluted all 
three spheres of the environment [6]. Potential substitutes, 
biofertilizers, including arbuscular mycorrhizal fungi (AMF) 
and phosphate-solubilizing bacteria (PSBs), are cost-e�ective, 
pollution-free, renewable, and safe for crops [7]. Arbuscular 
mycorrhizae supplement nitrate and phosphate ions along with 
other metal ions within the rhizosphere [8]. Phosphate 
solubilizing bacteria unlock the phosphate from the complex 
soil composites and solubilize them with the help of phytase 
enzyme, while AM fungi besides facilitating critical minerals 

modify host root architecture. �ese biofertilizers also secrete 
phytohormones in the host rhizosphere and protect them 
from soil borne pathogens [7,8]. Zinc plays a functional role in 
many physiological processes, in biochemical reactions, such 
as metalloenzymes [3,9], in the biosynthesis of proteins and 
chlorophyll, and in immune responses in animal systems [10]. 
Several metalloenzymes and biochemical reactions require Zn 
as a cofactor in cell metabolism [11]. Among the critical 
elements, nitrogen is an important part of the functional and 
structural part, i.e., proteins, secondary metabolites, 
coenzymes, and other molecules; phosphorus has a major role 
in nucleotide biosynthesis and energy transactions and 
signaling, while potassium regulates cell osmolarity and ion 
exchange [12]. Zinc de�ciency in crops is common and o�en 
represented as zinc hunger [13].

 In part, Zn hunger is prevalent due to the plant’s ine�cacy 
of absorbing and translocating it [14] or soil de�ciency [13]; 
thus, Zn fertilization improves the production and quality of 
produce in several crop plants. �erefore, to mitigate issues 
such as the limited availability of soil nutrients, high rates of 
loss of soil-applied fertilizers, and constraints on nutrient 
delivery to plant organs due to environmental conditions 

during critical growth stages. Foliar fertilization for sustainable 
crop management has recently been well-addressed [15]. 
Fertilization through foliar spray has been proven to alleviate 
micronutrient de�ciencies, reduce toxicity, and avoid 
fertilizer-related pollution [16-19]. Zn-induced phytotoxicity 
can directly reduce photosynthesis [20] or can create nutritional 
imbalance by interacting with other nutrients [21].

 To unleash the full potential of plant performance, 
nanoparticle fertilizer represents a new and e�ective technique 
of nutrient delivery. �is is crucial for creating more sustainable 
crop systems globally [22,23]. Nanoparticles are de�ned as 
particles with a size of less than 100 nm in at least one 
dimension [24]. Improvements in seed germination, seedling 
growth, biomass, total nitrogen content, protein and sugar 
contents, photosynthetic e�ciency, and nutrient uptake are all 
documented as positive impacts of nanoparticles (NPs) on plant 
growth in crops such as cucumber, mung, spinach, wheat, and 
tomato [25-29]. Research shows that NPs can enter plant tissues 
and then move inside a plant’s body systemically [30-32]. 
Among the di�erent NPs used, ZnO NPs are currently the 
fourth most widely used in the world [33]. Due to their unique 
characteristics compared to conventional Zn fertilizers, ZnO 
NPs can also serve as cutting-edge Zn fertilizers. Uncertainty 
exists regarding the process through which ZnO NPs enter 
plants. Studies have demonstrated that foliar ZnO NP and 
ZnSO4 spraying on wheat increased the Zn content in grains 
while leaving no traces of ZnO NP in them [29]. With slower 
delivery of micronutrients and a reduced risk of soil pollution 
and other environmental hazards compared to applying 
chemical fertilizers directly to the soil, nanoscale fertilization 
may be able to prevent the symptoms of phytotoxicity in plants 
[34]. In addition, nanoscale fertilizer application requires a 
lesser amount of fertilizer than conventional ones used through 
soil [35]. Even in stressed regimes, the use of nanofertilizers has 
been proven to have positive impacts on plant growth compared 
to normal  conditions [32,35-40]. However, whether it is a nano 
application, these e�ects depend on concentration.

 �e present research work is based on the hypothesis that 
foliar spraying of ZnO NPs or application of biofertilizers such 
as VAM or AMF and PSBs are more e�cient and promote plant 
growth better than generally used chemical fertilizer 
supplementation like nitrogen (N), phosphorus (P) and 
supplementation with zinc (Zn).

 �erefore, the present study aimed to compare the impacts 
of various soil-applied chemical fertilizers, such as N, P, Zn, 
foliar spray of ZnO NPs, and soil-applied bio-fertilizers such as 
phosphate solubilizing bacteria (PSBs) and arbuscular 
mycorrhizal fungi (AMF), on the growth and biochemical 
responses of mustard cultivars.

Materials and Methods
Experimental site and design
�e present experiment was performed in the Botany 
Department of Tilakdhari College, Jaunpur, state Uttar Pradesh 
(25° 73’ N latitude, 82°68’ E longitude at an elevation of 96 m 
above mean sea level). �e 25 × 25 cm earthen pots were �lled 
with 3 kg of �eld soil with the properties given in Table 1. �e 
recommended dose of fertilizers was mixed with the soil 
present in the pot. �e experiment was conducted under 
ambient environmental conditions in September-February 
2020.

 Pots were placed in a randomized completely block design 
(RCBD) where the experiment consisted of two factors and �ve 
replicates (2×7×5). �rst factor is two varieties of Brassica juncea 
(L.). �e second factor included seven levels of fertilizer 
treatments (control, ZnO NPs, Zn, N, P, PSB, and AMF) and �ve 
replicates for each treatment randomly distributed in block 
(RBD). �e total experimental units were 70(2×7×5=70).

Materials and experimental treatment plan
�e authentic seeds of Brassica juncea (L.) Czern and Coss cv. 
Alankar and Rohini were selected based on previous 
experiments and were procured from the National Seed 
Corporation Ltd., New Delhi, India. �e cultural strains of 
biofertilizers (Glomus intraradices) inoculum and PSB 
Pseudomonas aeruginosa) were procured from the Agriculture 
Department Seed Distribution Unit, District Agriculture O�ce, 
Quarsi Road, Aligarh. �e nanoparticles (ZnO-NPs) were 
purchased from Sigma-Aldrich Chemicals Pvt. Ltd. India. 100 
mM stock solution of ZnO-NPs was prepared by dissolving its 
required amount in 10 ml DDW in a 100 ml volumetric �ask, 
and making up total volume 100 ml by adding DDW. �e 
working concentrations of NPs were prepared by diluting this 
stock solution of ZnO-NPs as per requirement.

 Healthy, uniform-sized seeds were surface sterilized with a 
0.01% solution of mercuric chloride for 5 min to disinfect from 
surface pathogens and then washed repeatedly with double 
distilled water (DDW). To check the percent germination of 
seeds, a germination test was also conducted. Seeds of two 
mustard varieties, Alankar and Rohini, were sown in pot soils. 
�e soil analysis was conducted before the experiment 
presented in Table 1. Eight seeds per pot were sown and then 
thinned to three plants per pot one week a�er germination, 
selecting robust growing similar plants. 

 Among the six treatments (excluding control) of plants, 
three sets were maintained for the two mustard varieties. Five 
pots for each treatment were maintained as replicates (n=5). 
Mustard plants were irrigated with tap water as needed (Figure 1).
1. �e �rst set of plants was foliar sprayed with ZnO NPs (4 

millimoles aqueous solution).
2. For the next two di�erent sets, AM fungus and PSB were 

applied. Fi�y grams of Rhode grass cultured AM fungus; 
Glomus intraradices inoculum, was added to the soil around 
the seed to provide 500 IP (infective propagules) per pot. As 
a PSB, a suspension culture of Pseudomonas aeruginosa was 
used for the treatment of seeds. One milliliter of nutrient 
broth (Mannitol 10g, Yeast extract 1.0g, K2HPO4 0.5g, 

MgSO4.7H2O 0.2g, NaCl 0.1g per liter of DDW) suspension 
contained approximately 1.5×109 cfu per ml of media. Seeds 
were coated with this suspension culture and dried in a cool 
shady place before sowing. 

3. For three di�erent sets, N, P, and Zn were amended in the 
pot soil as per recommended doses of 120, 60, and 25 kg/ha 
taking urea, single superphosphate, and ZnSO4 as fertilizers. 
�e fertilizer requirement per kg pot soil was calculated* as 
72, 104, and 19 mg, respectively.

Methodology
At 60 days a�er sowing (DAS), the plants were sampled to study 
the following growth features.

Growth analysis
�e root and shoot lengths of the two varieties were measured 
using a meter scale. �e ratio of the shoot by root length was 
calculated by dividing the lengths of the two. �e fresh and dry 
mass of roots and shoots was measured with an electronic 
balance. To analyze the dry mass, the uprooted plants (roots and 
shoots) were placed in an oven at 80°C for 72 h and wrapped in 
butter paper. �e dried plants were then weighed to record plant 
dry mass. �e leaf area of randomly selected leaves from each 
variety was determined by the graph paper method of Pandey 
and Singh [41].

Total chlorophyll and proline content in leaves
�e leaf ’s total chlorophyll content was estimated in �nely cut 
fresh leaves following the method of Mackinney [42]. �e leaf 
proline content in fresh tissue was determined by following the 
method of Bates et al. [43].

Activity of Carbonic anhydrase (CA) and Nitrate 
reductase (NR) enzyme
Carbonic anhydrase activity (CA, E.C. 4.2.1.1) and nitrate 
reductase activity (NR, E.C. 1.6.6.1) were determined by 
following Dwivedi and Randhawa [13] and Jaworski [44] in 
fresh leaf samples.

Statistical analysis
�e experiment was conducted according to a simple 
randomized block design (SRBD). Each treatment was 
replicated �ve times (n=5), and three plants per pot were 
maintained where each pot was considered a replicate. 
Treatment means were compared by analysis of variance using 
R ver. 3.1.0 for Windows. �e least signi�cant di�erence (LSD) 
between treatment means was calculated at a 5% probability 
level (p< 0.05). 

Results
Growth parameters
Most of the (bio)fertilizer treatments (ZnO NPs, Zn, N, P, PSBs 
or AMF) promoted the growth (length, fresh mass, dry mass of 
root and shoot and leaf area) parameters in both varieties in a 
treatment-dependent manner at 60 DAS (Figure 2). However, 
the maximum stimulation of most of the growth parameters is 
achieved by ZnO NPs followed by either PSB or AMF. However, 
the Alankar variety outperformed the treatment here. �e root 
dry mass of Alankar for ZnO NPs, PSB, and AMF was 88%, 
62%, and 86%, respectively, while for shoot dry mass it was 83%, 
72%, and 80%, compared to control plants. For the same 
treatments leaf area improvement of Alankar was 35%, 28%, 
and 34%, and for Rohini, it was 33%, 23%, and 28%, 
respectively. �e ratio of the shoot by root length showed 
di�erent responses for the treatments.

Figure 3. Effect of foliar and soil mediated chemical and biofertilizers (Zn, Nitrogen, PSB, and AM fungi) on two different mustard varieties 
Brassica juncea var. Alankar and Rohini on (A) total chlorophyll, (B) proline level, (C) nitrate reductase activity, and (D) carbonic anhydrase 
activity at 60 days after sowing (DAS). Data are presented as the treatment mean ± standard error (n = 5). The different letters above the bars show 
that data are significantly different at p≤ 0.05 by Duncan’s multiple range test (DMRT).

Total chlorophyll content in leaves
�e total chlorophyll content (Figure 3A) in leaves increased 
signi�cantly (p≤0.05) when the two varieties were foliar sprayed 
with ZnO NPs. Alankar registered a 28% increase, while Rohini 
re�ected a 19% increase. �e PSB and AMF treatments also 

signi�cantly (p≤0.05) increased the leaf chlorophyll contents by 
28% and 34% in Alankar and 10% and 16% in Rohini, 
respectively, compared to the control plants. No signi�cant (p≤
0.05) increase in leaf chlorophyll level was noticed against 
soil-mediated N, P, and Zn treatments in the two varieties of 
mustard. 

Proline content in leaves
A signi�cant (p≤0.05) increase in leaf proline content (Figure 
3B) was recorded against the leaf-sprayed ZnO NPs and the 
soil-mediated two biofertilizers (PSB and AMF/VAM) and 
nitrogen treatment in the Alankar and Rohini varieties of 
mustard plants. �e data indicated that proline accumulation 
was higher in Alankar than in Rohini against the given 
treatments. For the above treatments, the increase was 46%, 
39%, 42%, and 37%, respectively, for Alankar. For Rohini, the 
increase was lesser, and in the order of ZnO 
NPs>AMF>PSB>N, an insigni�cant increase of proline was 
registered for the treatments of soil-mediated Zn and P 
recorded compared to control plants in the two varieties.

Nitrate reductase (NR) and carbonic anhydrase (CA) 
activity
�e two mustard varieties; Alankar and Rohini, showed a 
signi�cant (p≤0.05) increase in NR and CA activity (Figure 3C 
and 3D) compared to most of the treatments. �e increase in 

the activity of these enzymes against all the treatments of 
chemicals and biofertilizers was higher in Rohini than in 
Alankar. For NR activity, ZnO NP was followed by Zn and N 
treatments in the two varieties, and for CA, it was followed by 
AMF/VAM and PSBs, respectively. For NR activity, the increase 
against ZnO NP treatment was 140% and 111% in Alankar. For 
the Zn and N treatments, however, the increase in NR activity 
was 99% and 72%, respectively, compared to the control plants. 
�e CA activity was 79% and 58% for the two varieties, Alankar 
and Rohini, respectively. 

Discussion
Our agricultural system depends on the supplementation of 
primary nutrients (such as N, P, and K) to maximize crop 
output and support modern agriculture [45]. Mineral ion 
uptake properties show variation among plant species and 
cultivars [46]. In mustard plants, the growing seeds and leaves 
compete for nitrogen, and the size of the nitrogen pool in the 
vegetative sections largely determines seed set, seed growth, and 

�nal seed production [47,48]. Nitrogen supply in�uences 
several growth parameters, produces more robust growth and 
development, and increases plant height, number of �owering 
branches, total plant weight, and leaf area, all of which 
cumulatively enhance the yield output [49,50]. Brassica growth 
and yield improved with the application of 100–130 kg/ha 
nitrogen, while yield also increased at the same rate with the 
application of phosphorus [51-54]. However, this demand is 
typically higher in arid and semiarid environments [55,56]. As 
stated above, phosphorus has a greater impact on yield than 
nitrogen and potassium. Phosphorus is a component of nucleic 
acids, cell signaling, and membrane phospholipids. It also plays 
a role in energy metabolism, cell division, and the formation of 
several coenzymes, including ATP, NAD(P)H, and GTP [57]. P 
de�ciency manifests as visible purplish pigmentation on leaves, 
young, stunted stems, early leaf shedding, and reduced seed 
output [58,59]. Single, double, and triple superphosphate (SSP, 
DSP, TSP), ammonium phosphate, dicalcium phosphate, basic 
slag, calcium meta-phosphate, rock phosphate, bone meal, etc., 
are the main sources of plant phosphorus [60]. �e application 
of chemical fertilizers also poses a serious threat to nitrogen and 
other chemical pollution in soil and water bodies, leading to 
eutrophication [61]. To avoid nitrogen pollution and 
eutrophication of nutrients in water bodies, the application of 
nanosized nutrients, such as nanofertilizers, nanobiochar, and 
essential element nanoparticles, through foliar spraying has 
become a trend in recent studies because it minimizes the loss 
of nutrients and allows them to be e�ciently absorbed by plant 
leaves due to their nano size, which saves the environment and 
expenses of farmers [18, 62].

 �e �ndings of the present study demonstrated that the use 
of ZnO NPs improved the growth of two varieties, including the 
root and shoot length, their ratio, fresh and dry weight, and leaf 
area (Figure 2). Signi�cant di�erences were seen in the foliar 
delivery of ZnO NPs compared to soil amendment of Zn, which 
may be a cost-e�ective method for providing nutrients to the 
plants. A�er nitrogen, phosphorus, and potassium, Zn is 
regarded as the nutrient that limits yield the most both globally 
and in Indian soils [63]. According to estimates, 36.5% of 
Indian soils lack Zn [64]. While it is normal practice in modern 
agriculture to add fertilizers to complement natural soil fertility, 
temperate and tropical soils frequently continue to be low in 
micronutrients, particularly Zn [4,65]. Two forms of Zn 
in�uenced mustard growth di�erently. In general, foliar 
treatments with 4 mM ZnO NPs brought signi�cant 
improvement in growth parameters compared to Zn, N, or P 
given through soil and control plants. �e growth promotion 
was even higher than that with biofertilizers, PSBs, and AM 
fungi. Zinc from ZnO NPs can accumulate in the leaves through 
foliar feeding, making these NPs potentially useful sources of 
Zn for plants to employ in metabolic processes [66,67]. 
According to a recent study by [68], the predominant channel 
for wheat and sun�ower (Helianthus annuus L.) to absorb ZnO 
NPs under experimental conditions was through the leaf 
cuticle. In addition, ZnO NPs are used as nanofertilizers, which 
may be a more e�ective and slow-releasing source of Zn than 
conventional fertilizers or other sources of Zn [66,69,70]. 
According to a study by [71], applying ZnO NPs to the soil at 
various concentrations increased the Zn content of wheat 
tissues under normal or water-stress conditions. A�erwards, 
Adrees et al. [72] demonstrated that foliar exposure to ZnO NPs 
enhanced wheat development through foliar application. �e 

larger weights of the plants may be a factor in the enhanced 
availability of Zn as NPs compared to Zn applied to the soil. �e 
mustard plants’ growth and antioxidant enzyme activities were 
improved when ZnO NPs were sprayed [73]. �e intensi�cation 
of the metabolism aided by Zn is what causes the rise in dry 
mass. Enzymes, including dehydrogenases, aldolases, 
isomerases, transphosphorylases, and RNA and DNA 
polymerases, all require zinc to function [74]. Moreover, it 
contributes to tryptophan production, cell division, membrane 
structure maintenance, and photosynthesis and functions as a 
regulatory cofactor in protein synthesis [3,9]. Several species 
have been the subject of ZnO NPs experiments, and the overall 
bene�cial interactions have been previously characterized 
[35,74-76]. An increase in the FW and DW of seedlings growing 
in the presence of ZnO NPs was observed in earlier studies [77]. 
Reduced growth and plant biomass, restriction of cell 
elongation and division, wilting, curling, and rolling of young 
leaves, chlorotic and necrotic leaf tips, and suppression of root 
growth are all signs of Zn toxicity [78,79]. According to the 
�ndings of Rossi et al. [80] on co�ee plants treated with ZnO 
NPs, the photosynthetic apparatus was enhanced. In the present 
study, positive interactions were found between ZnO NPs and 
the net carbon assimilation rate and stomatal conductance. 

 In the present study, the e�cacy of treatments followed the 
pattern of ZnO NPs>AMF>PSBs>N and increased the leaf 
chlorophyll level, proline content, NR, and CA activity (Figure 
3 A-D). Nitrogen is a key nutrient component that gives crops 
their lush green color by increasing the amount of chlorophyll 
in the leaves and boosts biomass by increasing carbon �xation. 
However, depending on factors such as soil type, climate, 
management practices, when nitrogen is applied, cultivars, etc., 
nitrogen fertilizer needs can vary greatly [81]. Zn is a cofactor of 
carbonic anhydrase, which raises the amount of CO2 in the 
chloroplast and, as a result, also increases the ability of the 
Rubisco enzyme to carboxylate [82]. Di�erent macro-and 
micronutrient uptake can be a�ected by zinc’s e�ects on 
absorption [83,84]. Zn typically causes severe Fe de�ciency 
chlorosis in dicots on acidic soils. Crops such as lettuce, 
mustard, and beet are particularly vulnerable to too much soil 
Zn [85]. Zn transport and uptake by leaves were also 
investigated. Typically, ZnO NPs enter the leaf system through 
wounds, hydathodes, cuticle penetration, and stomata [10]. 
�is is evident from the data, which reveal that ZnO NPs 
markedly increased Zn levels in the leaf, while ZnSO4 did not 
signi�cantly accumulate when compared to the control. It 
results from the e�ects of adding P and other minerals, as well 
as phytohormones secreted by PSBs and AM fungi in the root 
zone. Positive e�ects of ZnO NPs were also studied on the seed 
germination and vegetative growth in di�erent crops of Arachis 
hypogea [86], Vigna radiata [87,88], Cicer arietinum [89], 
Glycine max [90], Helianthus annuus [91], Lycopersicon 
esculentum [92], Sesamum indicum [93], Brassica nigra [94] and 
Brassica juncea [95]. PGPR, such as PSB, proves useful in 
enhancing crop productivity by making nutrients more 
bioavailable in the soil with chemical secretion in the 
rhizosphere [96]. Alone and combination of AM fungi with 
biocontrol fungi or nanoparticles also prove e�ective in 
increasing the crop productivity in plants by increasing the 
phosphorus and other nutrients available in the soil by releasing 
chemicals in the soil that change the pH and amount of 
available organic matter content in the soil [97-99]. 
Combinations of PGPR and AMF improved the crop 

productivity in various plants and also helped to manage 
growth under stress conditions [100-103]. Although the 
interaction of Glomus species with mustard plants is not 
common, recent studies clearly show that it helps the plants to 
increase their resistance against pathogens and increase crop 
productivity by regulating enzymatic activities in plants and 
increasing the amount of nutrients and organic matter in the 
soil [104-106]. 

Conclusions 
Foliar exposure to ZnO NPs may be thought of as both an 
e�cient and di�erent method to increase productivity 
compared to other treatments. Nanoparticles have microscopic 
size and large surface area, which help maximize their uptake 
and translocation as nutrients in plants via foliar spray. As a 
result, ZnO NPs had more favorable e�ects on plant growth, 
morphology, development, physiology, and metabolism than 
traditional Zn salt because nanoparticles induce the genes 
involved in nutrient assimilation pathways. It may also be 
crucial to research how ZnO NPs a�ect other nutrients 
necessary for plant health as well as the general ecology of the 
rhizosphere. When compared to chemical fertilizer applications 
of P or even N, biofertilizers such as AMF/VAM and PSBs are 
also preferable because their chemical activity solubilizes and 
increases the bioavailability of nutrients in the soil, ultimately 
enhancing the growth of the treated plants. Further research is 
required to grow di�erent crop species in the �eld under diverse 
agroclimatic circumstances to determine the cost-e�ectiveness 
and adaptability of foliar ZnO NP exposure.

 However, a future aspect of this research is to determine 
the growth and yield responses of crops upon exposure to the 
combination of nanoparticles and biofertilizers. 
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Mustard (Brassica juncea L.) is one of the important oilseed 
crops grown in the Rabi (winter) season and contributes to 25% 
of the oilseed economy of India [1,2]. �e use of chemical 
fertilizers in arable soil is a routine practice in modern 
agriculture to supplement the depleting nutrients from natural 
soil fertility, among them nitrogen, phosphorus, potassium 
(NPK) and zinc (Zn) are more common [3,4]. Mustard varieties 
also respond to chemical fertilizers, particularly N and P. �e 
recommended dose of chemical fertilizers is crop-speci�c; 
excess or less application may lead to suboptimal production of 
lethal e�ects. Increased population growth and demand for 
food supply required higher use of chemical fertilizers, a costly 
input [5]. Additionally, excess use of these fertilizers polluted all 
three spheres of the environment [6]. Potential substitutes, 
biofertilizers, including arbuscular mycorrhizal fungi (AMF) 
and phosphate-solubilizing bacteria (PSBs), are cost-e�ective, 
pollution-free, renewable, and safe for crops [7]. Arbuscular 
mycorrhizae supplement nitrate and phosphate ions along with 
other metal ions within the rhizosphere [8]. Phosphate 
solubilizing bacteria unlock the phosphate from the complex 
soil composites and solubilize them with the help of phytase 
enzyme, while AM fungi besides facilitating critical minerals 

modify host root architecture. �ese biofertilizers also secrete 
phytohormones in the host rhizosphere and protect them 
from soil borne pathogens [7,8]. Zinc plays a functional role in 
many physiological processes, in biochemical reactions, such 
as metalloenzymes [3,9], in the biosynthesis of proteins and 
chlorophyll, and in immune responses in animal systems [10]. 
Several metalloenzymes and biochemical reactions require Zn 
as a cofactor in cell metabolism [11]. Among the critical 
elements, nitrogen is an important part of the functional and 
structural part, i.e., proteins, secondary metabolites, 
coenzymes, and other molecules; phosphorus has a major role 
in nucleotide biosynthesis and energy transactions and 
signaling, while potassium regulates cell osmolarity and ion 
exchange [12]. Zinc de�ciency in crops is common and o�en 
represented as zinc hunger [13].

 In part, Zn hunger is prevalent due to the plant’s ine�cacy 
of absorbing and translocating it [14] or soil de�ciency [13]; 
thus, Zn fertilization improves the production and quality of 
produce in several crop plants. �erefore, to mitigate issues 
such as the limited availability of soil nutrients, high rates of 
loss of soil-applied fertilizers, and constraints on nutrient 
delivery to plant organs due to environmental conditions 

during critical growth stages. Foliar fertilization for sustainable 
crop management has recently been well-addressed [15]. 
Fertilization through foliar spray has been proven to alleviate 
micronutrient de�ciencies, reduce toxicity, and avoid 
fertilizer-related pollution [16-19]. Zn-induced phytotoxicity 
can directly reduce photosynthesis [20] or can create nutritional 
imbalance by interacting with other nutrients [21].

 To unleash the full potential of plant performance, 
nanoparticle fertilizer represents a new and e�ective technique 
of nutrient delivery. �is is crucial for creating more sustainable 
crop systems globally [22,23]. Nanoparticles are de�ned as 
particles with a size of less than 100 nm in at least one 
dimension [24]. Improvements in seed germination, seedling 
growth, biomass, total nitrogen content, protein and sugar 
contents, photosynthetic e�ciency, and nutrient uptake are all 
documented as positive impacts of nanoparticles (NPs) on plant 
growth in crops such as cucumber, mung, spinach, wheat, and 
tomato [25-29]. Research shows that NPs can enter plant tissues 
and then move inside a plant’s body systemically [30-32]. 
Among the di�erent NPs used, ZnO NPs are currently the 
fourth most widely used in the world [33]. Due to their unique 
characteristics compared to conventional Zn fertilizers, ZnO 
NPs can also serve as cutting-edge Zn fertilizers. Uncertainty 
exists regarding the process through which ZnO NPs enter 
plants. Studies have demonstrated that foliar ZnO NP and 
ZnSO4 spraying on wheat increased the Zn content in grains 
while leaving no traces of ZnO NP in them [29]. With slower 
delivery of micronutrients and a reduced risk of soil pollution 
and other environmental hazards compared to applying 
chemical fertilizers directly to the soil, nanoscale fertilization 
may be able to prevent the symptoms of phytotoxicity in plants 
[34]. In addition, nanoscale fertilizer application requires a 
lesser amount of fertilizer than conventional ones used through 
soil [35]. Even in stressed regimes, the use of nanofertilizers has 
been proven to have positive impacts on plant growth compared 
to normal  conditions [32,35-40]. However, whether it is a nano 
application, these e�ects depend on concentration.

 �e present research work is based on the hypothesis that 
foliar spraying of ZnO NPs or application of biofertilizers such 
as VAM or AMF and PSBs are more e�cient and promote plant 
growth better than generally used chemical fertilizer 
supplementation like nitrogen (N), phosphorus (P) and 
supplementation with zinc (Zn).

 �erefore, the present study aimed to compare the impacts 
of various soil-applied chemical fertilizers, such as N, P, Zn, 
foliar spray of ZnO NPs, and soil-applied bio-fertilizers such as 
phosphate solubilizing bacteria (PSBs) and arbuscular 
mycorrhizal fungi (AMF), on the growth and biochemical 
responses of mustard cultivars.

Materials and Methods
Experimental site and design
�e present experiment was performed in the Botany 
Department of Tilakdhari College, Jaunpur, state Uttar Pradesh 
(25° 73’ N latitude, 82°68’ E longitude at an elevation of 96 m 
above mean sea level). �e 25 × 25 cm earthen pots were �lled 
with 3 kg of �eld soil with the properties given in Table 1. �e 
recommended dose of fertilizers was mixed with the soil 
present in the pot. �e experiment was conducted under 
ambient environmental conditions in September-February 
2020.

 Pots were placed in a randomized completely block design 
(RCBD) where the experiment consisted of two factors and �ve 
replicates (2×7×5). �rst factor is two varieties of Brassica juncea 
(L.). �e second factor included seven levels of fertilizer 
treatments (control, ZnO NPs, Zn, N, P, PSB, and AMF) and �ve 
replicates for each treatment randomly distributed in block 
(RBD). �e total experimental units were 70(2×7×5=70).

Materials and experimental treatment plan
�e authentic seeds of Brassica juncea (L.) Czern and Coss cv. 
Alankar and Rohini were selected based on previous 
experiments and were procured from the National Seed 
Corporation Ltd., New Delhi, India. �e cultural strains of 
biofertilizers (Glomus intraradices) inoculum and PSB 
Pseudomonas aeruginosa) were procured from the Agriculture 
Department Seed Distribution Unit, District Agriculture O�ce, 
Quarsi Road, Aligarh. �e nanoparticles (ZnO-NPs) were 
purchased from Sigma-Aldrich Chemicals Pvt. Ltd. India. 100 
mM stock solution of ZnO-NPs was prepared by dissolving its 
required amount in 10 ml DDW in a 100 ml volumetric �ask, 
and making up total volume 100 ml by adding DDW. �e 
working concentrations of NPs were prepared by diluting this 
stock solution of ZnO-NPs as per requirement.

 Healthy, uniform-sized seeds were surface sterilized with a 
0.01% solution of mercuric chloride for 5 min to disinfect from 
surface pathogens and then washed repeatedly with double 
distilled water (DDW). To check the percent germination of 
seeds, a germination test was also conducted. Seeds of two 
mustard varieties, Alankar and Rohini, were sown in pot soils. 
�e soil analysis was conducted before the experiment 
presented in Table 1. Eight seeds per pot were sown and then 
thinned to three plants per pot one week a�er germination, 
selecting robust growing similar plants. 

 Among the six treatments (excluding control) of plants, 
three sets were maintained for the two mustard varieties. Five 
pots for each treatment were maintained as replicates (n=5). 
Mustard plants were irrigated with tap water as needed (Figure 1).
1. �e �rst set of plants was foliar sprayed with ZnO NPs (4 

millimoles aqueous solution).
2. For the next two di�erent sets, AM fungus and PSB were 

applied. Fi�y grams of Rhode grass cultured AM fungus; 
Glomus intraradices inoculum, was added to the soil around 
the seed to provide 500 IP (infective propagules) per pot. As 
a PSB, a suspension culture of Pseudomonas aeruginosa was 
used for the treatment of seeds. One milliliter of nutrient 
broth (Mannitol 10g, Yeast extract 1.0g, K2HPO4 0.5g, 

MgSO4.7H2O 0.2g, NaCl 0.1g per liter of DDW) suspension 
contained approximately 1.5×109 cfu per ml of media. Seeds 
were coated with this suspension culture and dried in a cool 
shady place before sowing. 

3. For three di�erent sets, N, P, and Zn were amended in the 
pot soil as per recommended doses of 120, 60, and 25 kg/ha 
taking urea, single superphosphate, and ZnSO4 as fertilizers. 
�e fertilizer requirement per kg pot soil was calculated* as 
72, 104, and 19 mg, respectively.

Methodology
At 60 days a�er sowing (DAS), the plants were sampled to study 
the following growth features.

Growth analysis
�e root and shoot lengths of the two varieties were measured 
using a meter scale. �e ratio of the shoot by root length was 
calculated by dividing the lengths of the two. �e fresh and dry 
mass of roots and shoots was measured with an electronic 
balance. To analyze the dry mass, the uprooted plants (roots and 
shoots) were placed in an oven at 80°C for 72 h and wrapped in 
butter paper. �e dried plants were then weighed to record plant 
dry mass. �e leaf area of randomly selected leaves from each 
variety was determined by the graph paper method of Pandey 
and Singh [41].

Total chlorophyll and proline content in leaves
�e leaf ’s total chlorophyll content was estimated in �nely cut 
fresh leaves following the method of Mackinney [42]. �e leaf 
proline content in fresh tissue was determined by following the 
method of Bates et al. [43].

Activity of Carbonic anhydrase (CA) and Nitrate 
reductase (NR) enzyme
Carbonic anhydrase activity (CA, E.C. 4.2.1.1) and nitrate 
reductase activity (NR, E.C. 1.6.6.1) were determined by 
following Dwivedi and Randhawa [13] and Jaworski [44] in 
fresh leaf samples.

Statistical analysis
�e experiment was conducted according to a simple 
randomized block design (SRBD). Each treatment was 
replicated �ve times (n=5), and three plants per pot were 
maintained where each pot was considered a replicate. 
Treatment means were compared by analysis of variance using 
R ver. 3.1.0 for Windows. �e least signi�cant di�erence (LSD) 
between treatment means was calculated at a 5% probability 
level (p< 0.05). 

Results
Growth parameters
Most of the (bio)fertilizer treatments (ZnO NPs, Zn, N, P, PSBs 
or AMF) promoted the growth (length, fresh mass, dry mass of 
root and shoot and leaf area) parameters in both varieties in a 
treatment-dependent manner at 60 DAS (Figure 2). However, 
the maximum stimulation of most of the growth parameters is 
achieved by ZnO NPs followed by either PSB or AMF. However, 
the Alankar variety outperformed the treatment here. �e root 
dry mass of Alankar for ZnO NPs, PSB, and AMF was 88%, 
62%, and 86%, respectively, while for shoot dry mass it was 83%, 
72%, and 80%, compared to control plants. For the same 
treatments leaf area improvement of Alankar was 35%, 28%, 
and 34%, and for Rohini, it was 33%, 23%, and 28%, 
respectively. �e ratio of the shoot by root length showed 
di�erent responses for the treatments.

Total chlorophyll content in leaves
�e total chlorophyll content (Figure 3A) in leaves increased 
signi�cantly (p≤0.05) when the two varieties were foliar sprayed 
with ZnO NPs. Alankar registered a 28% increase, while Rohini 
re�ected a 19% increase. �e PSB and AMF treatments also 

signi�cantly (p≤0.05) increased the leaf chlorophyll contents by 
28% and 34% in Alankar and 10% and 16% in Rohini, 
respectively, compared to the control plants. No signi�cant (p≤
0.05) increase in leaf chlorophyll level was noticed against 
soil-mediated N, P, and Zn treatments in the two varieties of 
mustard. 

Proline content in leaves
A signi�cant (p≤0.05) increase in leaf proline content (Figure 
3B) was recorded against the leaf-sprayed ZnO NPs and the 
soil-mediated two biofertilizers (PSB and AMF/VAM) and 
nitrogen treatment in the Alankar and Rohini varieties of 
mustard plants. �e data indicated that proline accumulation 
was higher in Alankar than in Rohini against the given 
treatments. For the above treatments, the increase was 46%, 
39%, 42%, and 37%, respectively, for Alankar. For Rohini, the 
increase was lesser, and in the order of ZnO 
NPs>AMF>PSB>N, an insigni�cant increase of proline was 
registered for the treatments of soil-mediated Zn and P 
recorded compared to control plants in the two varieties.

Nitrate reductase (NR) and carbonic anhydrase (CA) 
activity
�e two mustard varieties; Alankar and Rohini, showed a 
signi�cant (p≤0.05) increase in NR and CA activity (Figure 3C 
and 3D) compared to most of the treatments. �e increase in 

the activity of these enzymes against all the treatments of 
chemicals and biofertilizers was higher in Rohini than in 
Alankar. For NR activity, ZnO NP was followed by Zn and N 
treatments in the two varieties, and for CA, it was followed by 
AMF/VAM and PSBs, respectively. For NR activity, the increase 
against ZnO NP treatment was 140% and 111% in Alankar. For 
the Zn and N treatments, however, the increase in NR activity 
was 99% and 72%, respectively, compared to the control plants. 
�e CA activity was 79% and 58% for the two varieties, Alankar 
and Rohini, respectively. 

Discussion
Our agricultural system depends on the supplementation of 
primary nutrients (such as N, P, and K) to maximize crop 
output and support modern agriculture [45]. Mineral ion 
uptake properties show variation among plant species and 
cultivars [46]. In mustard plants, the growing seeds and leaves 
compete for nitrogen, and the size of the nitrogen pool in the 
vegetative sections largely determines seed set, seed growth, and 

�nal seed production [47,48]. Nitrogen supply in�uences 
several growth parameters, produces more robust growth and 
development, and increases plant height, number of �owering 
branches, total plant weight, and leaf area, all of which 
cumulatively enhance the yield output [49,50]. Brassica growth 
and yield improved with the application of 100–130 kg/ha 
nitrogen, while yield also increased at the same rate with the 
application of phosphorus [51-54]. However, this demand is 
typically higher in arid and semiarid environments [55,56]. As 
stated above, phosphorus has a greater impact on yield than 
nitrogen and potassium. Phosphorus is a component of nucleic 
acids, cell signaling, and membrane phospholipids. It also plays 
a role in energy metabolism, cell division, and the formation of 
several coenzymes, including ATP, NAD(P)H, and GTP [57]. P 
de�ciency manifests as visible purplish pigmentation on leaves, 
young, stunted stems, early leaf shedding, and reduced seed 
output [58,59]. Single, double, and triple superphosphate (SSP, 
DSP, TSP), ammonium phosphate, dicalcium phosphate, basic 
slag, calcium meta-phosphate, rock phosphate, bone meal, etc., 
are the main sources of plant phosphorus [60]. �e application 
of chemical fertilizers also poses a serious threat to nitrogen and 
other chemical pollution in soil and water bodies, leading to 
eutrophication [61]. To avoid nitrogen pollution and 
eutrophication of nutrients in water bodies, the application of 
nanosized nutrients, such as nanofertilizers, nanobiochar, and 
essential element nanoparticles, through foliar spraying has 
become a trend in recent studies because it minimizes the loss 
of nutrients and allows them to be e�ciently absorbed by plant 
leaves due to their nano size, which saves the environment and 
expenses of farmers [18, 62].

 �e �ndings of the present study demonstrated that the use 
of ZnO NPs improved the growth of two varieties, including the 
root and shoot length, their ratio, fresh and dry weight, and leaf 
area (Figure 2). Signi�cant di�erences were seen in the foliar 
delivery of ZnO NPs compared to soil amendment of Zn, which 
may be a cost-e�ective method for providing nutrients to the 
plants. A�er nitrogen, phosphorus, and potassium, Zn is 
regarded as the nutrient that limits yield the most both globally 
and in Indian soils [63]. According to estimates, 36.5% of 
Indian soils lack Zn [64]. While it is normal practice in modern 
agriculture to add fertilizers to complement natural soil fertility, 
temperate and tropical soils frequently continue to be low in 
micronutrients, particularly Zn [4,65]. Two forms of Zn 
in�uenced mustard growth di�erently. In general, foliar 
treatments with 4 mM ZnO NPs brought signi�cant 
improvement in growth parameters compared to Zn, N, or P 
given through soil and control plants. �e growth promotion 
was even higher than that with biofertilizers, PSBs, and AM 
fungi. Zinc from ZnO NPs can accumulate in the leaves through 
foliar feeding, making these NPs potentially useful sources of 
Zn for plants to employ in metabolic processes [66,67]. 
According to a recent study by [68], the predominant channel 
for wheat and sun�ower (Helianthus annuus L.) to absorb ZnO 
NPs under experimental conditions was through the leaf 
cuticle. In addition, ZnO NPs are used as nanofertilizers, which 
may be a more e�ective and slow-releasing source of Zn than 
conventional fertilizers or other sources of Zn [66,69,70]. 
According to a study by [71], applying ZnO NPs to the soil at 
various concentrations increased the Zn content of wheat 
tissues under normal or water-stress conditions. A�erwards, 
Adrees et al. [72] demonstrated that foliar exposure to ZnO NPs 
enhanced wheat development through foliar application. �e 

larger weights of the plants may be a factor in the enhanced 
availability of Zn as NPs compared to Zn applied to the soil. �e 
mustard plants’ growth and antioxidant enzyme activities were 
improved when ZnO NPs were sprayed [73]. �e intensi�cation 
of the metabolism aided by Zn is what causes the rise in dry 
mass. Enzymes, including dehydrogenases, aldolases, 
isomerases, transphosphorylases, and RNA and DNA 
polymerases, all require zinc to function [74]. Moreover, it 
contributes to tryptophan production, cell division, membrane 
structure maintenance, and photosynthesis and functions as a 
regulatory cofactor in protein synthesis [3,9]. Several species 
have been the subject of ZnO NPs experiments, and the overall 
bene�cial interactions have been previously characterized 
[35,74-76]. An increase in the FW and DW of seedlings growing 
in the presence of ZnO NPs was observed in earlier studies [77]. 
Reduced growth and plant biomass, restriction of cell 
elongation and division, wilting, curling, and rolling of young 
leaves, chlorotic and necrotic leaf tips, and suppression of root 
growth are all signs of Zn toxicity [78,79]. According to the 
�ndings of Rossi et al. [80] on co�ee plants treated with ZnO 
NPs, the photosynthetic apparatus was enhanced. In the present 
study, positive interactions were found between ZnO NPs and 
the net carbon assimilation rate and stomatal conductance. 

 In the present study, the e�cacy of treatments followed the 
pattern of ZnO NPs>AMF>PSBs>N and increased the leaf 
chlorophyll level, proline content, NR, and CA activity (Figure 
3 A-D). Nitrogen is a key nutrient component that gives crops 
their lush green color by increasing the amount of chlorophyll 
in the leaves and boosts biomass by increasing carbon �xation. 
However, depending on factors such as soil type, climate, 
management practices, when nitrogen is applied, cultivars, etc., 
nitrogen fertilizer needs can vary greatly [81]. Zn is a cofactor of 
carbonic anhydrase, which raises the amount of CO2 in the 
chloroplast and, as a result, also increases the ability of the 
Rubisco enzyme to carboxylate [82]. Di�erent macro-and 
micronutrient uptake can be a�ected by zinc’s e�ects on 
absorption [83,84]. Zn typically causes severe Fe de�ciency 
chlorosis in dicots on acidic soils. Crops such as lettuce, 
mustard, and beet are particularly vulnerable to too much soil 
Zn [85]. Zn transport and uptake by leaves were also 
investigated. Typically, ZnO NPs enter the leaf system through 
wounds, hydathodes, cuticle penetration, and stomata [10]. 
�is is evident from the data, which reveal that ZnO NPs 
markedly increased Zn levels in the leaf, while ZnSO4 did not 
signi�cantly accumulate when compared to the control. It 
results from the e�ects of adding P and other minerals, as well 
as phytohormones secreted by PSBs and AM fungi in the root 
zone. Positive e�ects of ZnO NPs were also studied on the seed 
germination and vegetative growth in di�erent crops of Arachis 
hypogea [86], Vigna radiata [87,88], Cicer arietinum [89], 
Glycine max [90], Helianthus annuus [91], Lycopersicon 
esculentum [92], Sesamum indicum [93], Brassica nigra [94] and 
Brassica juncea [95]. PGPR, such as PSB, proves useful in 
enhancing crop productivity by making nutrients more 
bioavailable in the soil with chemical secretion in the 
rhizosphere [96]. Alone and combination of AM fungi with 
biocontrol fungi or nanoparticles also prove e�ective in 
increasing the crop productivity in plants by increasing the 
phosphorus and other nutrients available in the soil by releasing 
chemicals in the soil that change the pH and amount of 
available organic matter content in the soil [97-99]. 
Combinations of PGPR and AMF improved the crop 

productivity in various plants and also helped to manage 
growth under stress conditions [100-103]. Although the 
interaction of Glomus species with mustard plants is not 
common, recent studies clearly show that it helps the plants to 
increase their resistance against pathogens and increase crop 
productivity by regulating enzymatic activities in plants and 
increasing the amount of nutrients and organic matter in the 
soil [104-106]. 

Conclusions 
Foliar exposure to ZnO NPs may be thought of as both an 
e�cient and di�erent method to increase productivity 
compared to other treatments. Nanoparticles have microscopic 
size and large surface area, which help maximize their uptake 
and translocation as nutrients in plants via foliar spray. As a 
result, ZnO NPs had more favorable e�ects on plant growth, 
morphology, development, physiology, and metabolism than 
traditional Zn salt because nanoparticles induce the genes 
involved in nutrient assimilation pathways. It may also be 
crucial to research how ZnO NPs a�ect other nutrients 
necessary for plant health as well as the general ecology of the 
rhizosphere. When compared to chemical fertilizer applications 
of P or even N, biofertilizers such as AMF/VAM and PSBs are 
also preferable because their chemical activity solubilizes and 
increases the bioavailability of nutrients in the soil, ultimately 
enhancing the growth of the treated plants. Further research is 
required to grow di�erent crop species in the �eld under diverse 
agroclimatic circumstances to determine the cost-e�ectiveness 
and adaptability of foliar ZnO NP exposure.

 However, a future aspect of this research is to determine 
the growth and yield responses of crops upon exposure to the 
combination of nanoparticles and biofertilizers. 
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Mustard (Brassica juncea L.) is one of the important oilseed 
crops grown in the Rabi (winter) season and contributes to 25% 
of the oilseed economy of India [1,2]. �e use of chemical 
fertilizers in arable soil is a routine practice in modern 
agriculture to supplement the depleting nutrients from natural 
soil fertility, among them nitrogen, phosphorus, potassium 
(NPK) and zinc (Zn) are more common [3,4]. Mustard varieties 
also respond to chemical fertilizers, particularly N and P. �e 
recommended dose of chemical fertilizers is crop-speci�c; 
excess or less application may lead to suboptimal production of 
lethal e�ects. Increased population growth and demand for 
food supply required higher use of chemical fertilizers, a costly 
input [5]. Additionally, excess use of these fertilizers polluted all 
three spheres of the environment [6]. Potential substitutes, 
biofertilizers, including arbuscular mycorrhizal fungi (AMF) 
and phosphate-solubilizing bacteria (PSBs), are cost-e�ective, 
pollution-free, renewable, and safe for crops [7]. Arbuscular 
mycorrhizae supplement nitrate and phosphate ions along with 
other metal ions within the rhizosphere [8]. Phosphate 
solubilizing bacteria unlock the phosphate from the complex 
soil composites and solubilize them with the help of phytase 
enzyme, while AM fungi besides facilitating critical minerals 

modify host root architecture. �ese biofertilizers also secrete 
phytohormones in the host rhizosphere and protect them 
from soil borne pathogens [7,8]. Zinc plays a functional role in 
many physiological processes, in biochemical reactions, such 
as metalloenzymes [3,9], in the biosynthesis of proteins and 
chlorophyll, and in immune responses in animal systems [10]. 
Several metalloenzymes and biochemical reactions require Zn 
as a cofactor in cell metabolism [11]. Among the critical 
elements, nitrogen is an important part of the functional and 
structural part, i.e., proteins, secondary metabolites, 
coenzymes, and other molecules; phosphorus has a major role 
in nucleotide biosynthesis and energy transactions and 
signaling, while potassium regulates cell osmolarity and ion 
exchange [12]. Zinc de�ciency in crops is common and o�en 
represented as zinc hunger [13].

 In part, Zn hunger is prevalent due to the plant’s ine�cacy 
of absorbing and translocating it [14] or soil de�ciency [13]; 
thus, Zn fertilization improves the production and quality of 
produce in several crop plants. �erefore, to mitigate issues 
such as the limited availability of soil nutrients, high rates of 
loss of soil-applied fertilizers, and constraints on nutrient 
delivery to plant organs due to environmental conditions 

during critical growth stages. Foliar fertilization for sustainable 
crop management has recently been well-addressed [15]. 
Fertilization through foliar spray has been proven to alleviate 
micronutrient de�ciencies, reduce toxicity, and avoid 
fertilizer-related pollution [16-19]. Zn-induced phytotoxicity 
can directly reduce photosynthesis [20] or can create nutritional 
imbalance by interacting with other nutrients [21].

 To unleash the full potential of plant performance, 
nanoparticle fertilizer represents a new and e�ective technique 
of nutrient delivery. �is is crucial for creating more sustainable 
crop systems globally [22,23]. Nanoparticles are de�ned as 
particles with a size of less than 100 nm in at least one 
dimension [24]. Improvements in seed germination, seedling 
growth, biomass, total nitrogen content, protein and sugar 
contents, photosynthetic e�ciency, and nutrient uptake are all 
documented as positive impacts of nanoparticles (NPs) on plant 
growth in crops such as cucumber, mung, spinach, wheat, and 
tomato [25-29]. Research shows that NPs can enter plant tissues 
and then move inside a plant’s body systemically [30-32]. 
Among the di�erent NPs used, ZnO NPs are currently the 
fourth most widely used in the world [33]. Due to their unique 
characteristics compared to conventional Zn fertilizers, ZnO 
NPs can also serve as cutting-edge Zn fertilizers. Uncertainty 
exists regarding the process through which ZnO NPs enter 
plants. Studies have demonstrated that foliar ZnO NP and 
ZnSO4 spraying on wheat increased the Zn content in grains 
while leaving no traces of ZnO NP in them [29]. With slower 
delivery of micronutrients and a reduced risk of soil pollution 
and other environmental hazards compared to applying 
chemical fertilizers directly to the soil, nanoscale fertilization 
may be able to prevent the symptoms of phytotoxicity in plants 
[34]. In addition, nanoscale fertilizer application requires a 
lesser amount of fertilizer than conventional ones used through 
soil [35]. Even in stressed regimes, the use of nanofertilizers has 
been proven to have positive impacts on plant growth compared 
to normal  conditions [32,35-40]. However, whether it is a nano 
application, these e�ects depend on concentration.

 �e present research work is based on the hypothesis that 
foliar spraying of ZnO NPs or application of biofertilizers such 
as VAM or AMF and PSBs are more e�cient and promote plant 
growth better than generally used chemical fertilizer 
supplementation like nitrogen (N), phosphorus (P) and 
supplementation with zinc (Zn).

 �erefore, the present study aimed to compare the impacts 
of various soil-applied chemical fertilizers, such as N, P, Zn, 
foliar spray of ZnO NPs, and soil-applied bio-fertilizers such as 
phosphate solubilizing bacteria (PSBs) and arbuscular 
mycorrhizal fungi (AMF), on the growth and biochemical 
responses of mustard cultivars.

Materials and Methods
Experimental site and design
�e present experiment was performed in the Botany 
Department of Tilakdhari College, Jaunpur, state Uttar Pradesh 
(25° 73’ N latitude, 82°68’ E longitude at an elevation of 96 m 
above mean sea level). �e 25 × 25 cm earthen pots were �lled 
with 3 kg of �eld soil with the properties given in Table 1. �e 
recommended dose of fertilizers was mixed with the soil 
present in the pot. �e experiment was conducted under 
ambient environmental conditions in September-February 
2020.

 Pots were placed in a randomized completely block design 
(RCBD) where the experiment consisted of two factors and �ve 
replicates (2×7×5). �rst factor is two varieties of Brassica juncea 
(L.). �e second factor included seven levels of fertilizer 
treatments (control, ZnO NPs, Zn, N, P, PSB, and AMF) and �ve 
replicates for each treatment randomly distributed in block 
(RBD). �e total experimental units were 70(2×7×5=70).

Materials and experimental treatment plan
�e authentic seeds of Brassica juncea (L.) Czern and Coss cv. 
Alankar and Rohini were selected based on previous 
experiments and were procured from the National Seed 
Corporation Ltd., New Delhi, India. �e cultural strains of 
biofertilizers (Glomus intraradices) inoculum and PSB 
Pseudomonas aeruginosa) were procured from the Agriculture 
Department Seed Distribution Unit, District Agriculture O�ce, 
Quarsi Road, Aligarh. �e nanoparticles (ZnO-NPs) were 
purchased from Sigma-Aldrich Chemicals Pvt. Ltd. India. 100 
mM stock solution of ZnO-NPs was prepared by dissolving its 
required amount in 10 ml DDW in a 100 ml volumetric �ask, 
and making up total volume 100 ml by adding DDW. �e 
working concentrations of NPs were prepared by diluting this 
stock solution of ZnO-NPs as per requirement.

 Healthy, uniform-sized seeds were surface sterilized with a 
0.01% solution of mercuric chloride for 5 min to disinfect from 
surface pathogens and then washed repeatedly with double 
distilled water (DDW). To check the percent germination of 
seeds, a germination test was also conducted. Seeds of two 
mustard varieties, Alankar and Rohini, were sown in pot soils. 
�e soil analysis was conducted before the experiment 
presented in Table 1. Eight seeds per pot were sown and then 
thinned to three plants per pot one week a�er germination, 
selecting robust growing similar plants. 

 Among the six treatments (excluding control) of plants, 
three sets were maintained for the two mustard varieties. Five 
pots for each treatment were maintained as replicates (n=5). 
Mustard plants were irrigated with tap water as needed (Figure 1).
1. �e �rst set of plants was foliar sprayed with ZnO NPs (4 

millimoles aqueous solution).
2. For the next two di�erent sets, AM fungus and PSB were 

applied. Fi�y grams of Rhode grass cultured AM fungus; 
Glomus intraradices inoculum, was added to the soil around 
the seed to provide 500 IP (infective propagules) per pot. As 
a PSB, a suspension culture of Pseudomonas aeruginosa was 
used for the treatment of seeds. One milliliter of nutrient 
broth (Mannitol 10g, Yeast extract 1.0g, K2HPO4 0.5g, 

MgSO4.7H2O 0.2g, NaCl 0.1g per liter of DDW) suspension 
contained approximately 1.5×109 cfu per ml of media. Seeds 
were coated with this suspension culture and dried in a cool 
shady place before sowing. 

3. For three di�erent sets, N, P, and Zn were amended in the 
pot soil as per recommended doses of 120, 60, and 25 kg/ha 
taking urea, single superphosphate, and ZnSO4 as fertilizers. 
�e fertilizer requirement per kg pot soil was calculated* as 
72, 104, and 19 mg, respectively.

Methodology
At 60 days a�er sowing (DAS), the plants were sampled to study 
the following growth features.

Growth analysis
�e root and shoot lengths of the two varieties were measured 
using a meter scale. �e ratio of the shoot by root length was 
calculated by dividing the lengths of the two. �e fresh and dry 
mass of roots and shoots was measured with an electronic 
balance. To analyze the dry mass, the uprooted plants (roots and 
shoots) were placed in an oven at 80°C for 72 h and wrapped in 
butter paper. �e dried plants were then weighed to record plant 
dry mass. �e leaf area of randomly selected leaves from each 
variety was determined by the graph paper method of Pandey 
and Singh [41].

Total chlorophyll and proline content in leaves
�e leaf ’s total chlorophyll content was estimated in �nely cut 
fresh leaves following the method of Mackinney [42]. �e leaf 
proline content in fresh tissue was determined by following the 
method of Bates et al. [43].

Activity of Carbonic anhydrase (CA) and Nitrate 
reductase (NR) enzyme
Carbonic anhydrase activity (CA, E.C. 4.2.1.1) and nitrate 
reductase activity (NR, E.C. 1.6.6.1) were determined by 
following Dwivedi and Randhawa [13] and Jaworski [44] in 
fresh leaf samples.

Statistical analysis
�e experiment was conducted according to a simple 
randomized block design (SRBD). Each treatment was 
replicated �ve times (n=5), and three plants per pot were 
maintained where each pot was considered a replicate. 
Treatment means were compared by analysis of variance using 
R ver. 3.1.0 for Windows. �e least signi�cant di�erence (LSD) 
between treatment means was calculated at a 5% probability 
level (p< 0.05). 

Results
Growth parameters
Most of the (bio)fertilizer treatments (ZnO NPs, Zn, N, P, PSBs 
or AMF) promoted the growth (length, fresh mass, dry mass of 
root and shoot and leaf area) parameters in both varieties in a 
treatment-dependent manner at 60 DAS (Figure 2). However, 
the maximum stimulation of most of the growth parameters is 
achieved by ZnO NPs followed by either PSB or AMF. However, 
the Alankar variety outperformed the treatment here. �e root 
dry mass of Alankar for ZnO NPs, PSB, and AMF was 88%, 
62%, and 86%, respectively, while for shoot dry mass it was 83%, 
72%, and 80%, compared to control plants. For the same 
treatments leaf area improvement of Alankar was 35%, 28%, 
and 34%, and for Rohini, it was 33%, 23%, and 28%, 
respectively. �e ratio of the shoot by root length showed 
di�erent responses for the treatments.

Total chlorophyll content in leaves
�e total chlorophyll content (Figure 3A) in leaves increased 
signi�cantly (p≤0.05) when the two varieties were foliar sprayed 
with ZnO NPs. Alankar registered a 28% increase, while Rohini 
re�ected a 19% increase. �e PSB and AMF treatments also 

signi�cantly (p≤0.05) increased the leaf chlorophyll contents by 
28% and 34% in Alankar and 10% and 16% in Rohini, 
respectively, compared to the control plants. No signi�cant (p≤
0.05) increase in leaf chlorophyll level was noticed against 
soil-mediated N, P, and Zn treatments in the two varieties of 
mustard. 

Proline content in leaves
A signi�cant (p≤0.05) increase in leaf proline content (Figure 
3B) was recorded against the leaf-sprayed ZnO NPs and the 
soil-mediated two biofertilizers (PSB and AMF/VAM) and 
nitrogen treatment in the Alankar and Rohini varieties of 
mustard plants. �e data indicated that proline accumulation 
was higher in Alankar than in Rohini against the given 
treatments. For the above treatments, the increase was 46%, 
39%, 42%, and 37%, respectively, for Alankar. For Rohini, the 
increase was lesser, and in the order of ZnO 
NPs>AMF>PSB>N, an insigni�cant increase of proline was 
registered for the treatments of soil-mediated Zn and P 
recorded compared to control plants in the two varieties.

Nitrate reductase (NR) and carbonic anhydrase (CA) 
activity
�e two mustard varieties; Alankar and Rohini, showed a 
signi�cant (p≤0.05) increase in NR and CA activity (Figure 3C 
and 3D) compared to most of the treatments. �e increase in 

the activity of these enzymes against all the treatments of 
chemicals and biofertilizers was higher in Rohini than in 
Alankar. For NR activity, ZnO NP was followed by Zn and N 
treatments in the two varieties, and for CA, it was followed by 
AMF/VAM and PSBs, respectively. For NR activity, the increase 
against ZnO NP treatment was 140% and 111% in Alankar. For 
the Zn and N treatments, however, the increase in NR activity 
was 99% and 72%, respectively, compared to the control plants. 
�e CA activity was 79% and 58% for the two varieties, Alankar 
and Rohini, respectively. 

Discussion
Our agricultural system depends on the supplementation of 
primary nutrients (such as N, P, and K) to maximize crop 
output and support modern agriculture [45]. Mineral ion 
uptake properties show variation among plant species and 
cultivars [46]. In mustard plants, the growing seeds and leaves 
compete for nitrogen, and the size of the nitrogen pool in the 
vegetative sections largely determines seed set, seed growth, and 

�nal seed production [47,48]. Nitrogen supply in�uences 
several growth parameters, produces more robust growth and 
development, and increases plant height, number of �owering 
branches, total plant weight, and leaf area, all of which 
cumulatively enhance the yield output [49,50]. Brassica growth 
and yield improved with the application of 100–130 kg/ha 
nitrogen, while yield also increased at the same rate with the 
application of phosphorus [51-54]. However, this demand is 
typically higher in arid and semiarid environments [55,56]. As 
stated above, phosphorus has a greater impact on yield than 
nitrogen and potassium. Phosphorus is a component of nucleic 
acids, cell signaling, and membrane phospholipids. It also plays 
a role in energy metabolism, cell division, and the formation of 
several coenzymes, including ATP, NAD(P)H, and GTP [57]. P 
de�ciency manifests as visible purplish pigmentation on leaves, 
young, stunted stems, early leaf shedding, and reduced seed 
output [58,59]. Single, double, and triple superphosphate (SSP, 
DSP, TSP), ammonium phosphate, dicalcium phosphate, basic 
slag, calcium meta-phosphate, rock phosphate, bone meal, etc., 
are the main sources of plant phosphorus [60]. �e application 
of chemical fertilizers also poses a serious threat to nitrogen and 
other chemical pollution in soil and water bodies, leading to 
eutrophication [61]. To avoid nitrogen pollution and 
eutrophication of nutrients in water bodies, the application of 
nanosized nutrients, such as nanofertilizers, nanobiochar, and 
essential element nanoparticles, through foliar spraying has 
become a trend in recent studies because it minimizes the loss 
of nutrients and allows them to be e�ciently absorbed by plant 
leaves due to their nano size, which saves the environment and 
expenses of farmers [18, 62].

 �e �ndings of the present study demonstrated that the use 
of ZnO NPs improved the growth of two varieties, including the 
root and shoot length, their ratio, fresh and dry weight, and leaf 
area (Figure 2). Signi�cant di�erences were seen in the foliar 
delivery of ZnO NPs compared to soil amendment of Zn, which 
may be a cost-e�ective method for providing nutrients to the 
plants. A�er nitrogen, phosphorus, and potassium, Zn is 
regarded as the nutrient that limits yield the most both globally 
and in Indian soils [63]. According to estimates, 36.5% of 
Indian soils lack Zn [64]. While it is normal practice in modern 
agriculture to add fertilizers to complement natural soil fertility, 
temperate and tropical soils frequently continue to be low in 
micronutrients, particularly Zn [4,65]. Two forms of Zn 
in�uenced mustard growth di�erently. In general, foliar 
treatments with 4 mM ZnO NPs brought signi�cant 
improvement in growth parameters compared to Zn, N, or P 
given through soil and control plants. �e growth promotion 
was even higher than that with biofertilizers, PSBs, and AM 
fungi. Zinc from ZnO NPs can accumulate in the leaves through 
foliar feeding, making these NPs potentially useful sources of 
Zn for plants to employ in metabolic processes [66,67]. 
According to a recent study by [68], the predominant channel 
for wheat and sun�ower (Helianthus annuus L.) to absorb ZnO 
NPs under experimental conditions was through the leaf 
cuticle. In addition, ZnO NPs are used as nanofertilizers, which 
may be a more e�ective and slow-releasing source of Zn than 
conventional fertilizers or other sources of Zn [66,69,70]. 
According to a study by [71], applying ZnO NPs to the soil at 
various concentrations increased the Zn content of wheat 
tissues under normal or water-stress conditions. A�erwards, 
Adrees et al. [72] demonstrated that foliar exposure to ZnO NPs 
enhanced wheat development through foliar application. �e 

larger weights of the plants may be a factor in the enhanced 
availability of Zn as NPs compared to Zn applied to the soil. �e 
mustard plants’ growth and antioxidant enzyme activities were 
improved when ZnO NPs were sprayed [73]. �e intensi�cation 
of the metabolism aided by Zn is what causes the rise in dry 
mass. Enzymes, including dehydrogenases, aldolases, 
isomerases, transphosphorylases, and RNA and DNA 
polymerases, all require zinc to function [74]. Moreover, it 
contributes to tryptophan production, cell division, membrane 
structure maintenance, and photosynthesis and functions as a 
regulatory cofactor in protein synthesis [3,9]. Several species 
have been the subject of ZnO NPs experiments, and the overall 
bene�cial interactions have been previously characterized 
[35,74-76]. An increase in the FW and DW of seedlings growing 
in the presence of ZnO NPs was observed in earlier studies [77]. 
Reduced growth and plant biomass, restriction of cell 
elongation and division, wilting, curling, and rolling of young 
leaves, chlorotic and necrotic leaf tips, and suppression of root 
growth are all signs of Zn toxicity [78,79]. According to the 
�ndings of Rossi et al. [80] on co�ee plants treated with ZnO 
NPs, the photosynthetic apparatus was enhanced. In the present 
study, positive interactions were found between ZnO NPs and 
the net carbon assimilation rate and stomatal conductance. 

 In the present study, the e�cacy of treatments followed the 
pattern of ZnO NPs>AMF>PSBs>N and increased the leaf 
chlorophyll level, proline content, NR, and CA activity (Figure 
3 A-D). Nitrogen is a key nutrient component that gives crops 
their lush green color by increasing the amount of chlorophyll 
in the leaves and boosts biomass by increasing carbon �xation. 
However, depending on factors such as soil type, climate, 
management practices, when nitrogen is applied, cultivars, etc., 
nitrogen fertilizer needs can vary greatly [81]. Zn is a cofactor of 
carbonic anhydrase, which raises the amount of CO2 in the 
chloroplast and, as a result, also increases the ability of the 
Rubisco enzyme to carboxylate [82]. Di�erent macro-and 
micronutrient uptake can be a�ected by zinc’s e�ects on 
absorption [83,84]. Zn typically causes severe Fe de�ciency 
chlorosis in dicots on acidic soils. Crops such as lettuce, 
mustard, and beet are particularly vulnerable to too much soil 
Zn [85]. Zn transport and uptake by leaves were also 
investigated. Typically, ZnO NPs enter the leaf system through 
wounds, hydathodes, cuticle penetration, and stomata [10]. 
�is is evident from the data, which reveal that ZnO NPs 
markedly increased Zn levels in the leaf, while ZnSO4 did not 
signi�cantly accumulate when compared to the control. It 
results from the e�ects of adding P and other minerals, as well 
as phytohormones secreted by PSBs and AM fungi in the root 
zone. Positive e�ects of ZnO NPs were also studied on the seed 
germination and vegetative growth in di�erent crops of Arachis 
hypogea [86], Vigna radiata [87,88], Cicer arietinum [89], 
Glycine max [90], Helianthus annuus [91], Lycopersicon 
esculentum [92], Sesamum indicum [93], Brassica nigra [94] and 
Brassica juncea [95]. PGPR, such as PSB, proves useful in 
enhancing crop productivity by making nutrients more 
bioavailable in the soil with chemical secretion in the 
rhizosphere [96]. Alone and combination of AM fungi with 
biocontrol fungi or nanoparticles also prove e�ective in 
increasing the crop productivity in plants by increasing the 
phosphorus and other nutrients available in the soil by releasing 
chemicals in the soil that change the pH and amount of 
available organic matter content in the soil [97-99]. 
Combinations of PGPR and AMF improved the crop 

productivity in various plants and also helped to manage 
growth under stress conditions [100-103]. Although the 
interaction of Glomus species with mustard plants is not 
common, recent studies clearly show that it helps the plants to 
increase their resistance against pathogens and increase crop 
productivity by regulating enzymatic activities in plants and 
increasing the amount of nutrients and organic matter in the 
soil [104-106]. 

Conclusions 
Foliar exposure to ZnO NPs may be thought of as both an 
e�cient and di�erent method to increase productivity 
compared to other treatments. Nanoparticles have microscopic 
size and large surface area, which help maximize their uptake 
and translocation as nutrients in plants via foliar spray. As a 
result, ZnO NPs had more favorable e�ects on plant growth, 
morphology, development, physiology, and metabolism than 
traditional Zn salt because nanoparticles induce the genes 
involved in nutrient assimilation pathways. It may also be 
crucial to research how ZnO NPs a�ect other nutrients 
necessary for plant health as well as the general ecology of the 
rhizosphere. When compared to chemical fertilizer applications 
of P or even N, biofertilizers such as AMF/VAM and PSBs are 
also preferable because their chemical activity solubilizes and 
increases the bioavailability of nutrients in the soil, ultimately 
enhancing the growth of the treated plants. Further research is 
required to grow di�erent crop species in the �eld under diverse 
agroclimatic circumstances to determine the cost-e�ectiveness 
and adaptability of foliar ZnO NP exposure.

 However, a future aspect of this research is to determine 
the growth and yield responses of crops upon exposure to the 
combination of nanoparticles and biofertilizers. 
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Mustard (Brassica juncea L.) is one of the important oilseed 
crops grown in the Rabi (winter) season and contributes to 25% 
of the oilseed economy of India [1,2]. �e use of chemical 
fertilizers in arable soil is a routine practice in modern 
agriculture to supplement the depleting nutrients from natural 
soil fertility, among them nitrogen, phosphorus, potassium 
(NPK) and zinc (Zn) are more common [3,4]. Mustard varieties 
also respond to chemical fertilizers, particularly N and P. �e 
recommended dose of chemical fertilizers is crop-speci�c; 
excess or less application may lead to suboptimal production of 
lethal e�ects. Increased population growth and demand for 
food supply required higher use of chemical fertilizers, a costly 
input [5]. Additionally, excess use of these fertilizers polluted all 
three spheres of the environment [6]. Potential substitutes, 
biofertilizers, including arbuscular mycorrhizal fungi (AMF) 
and phosphate-solubilizing bacteria (PSBs), are cost-e�ective, 
pollution-free, renewable, and safe for crops [7]. Arbuscular 
mycorrhizae supplement nitrate and phosphate ions along with 
other metal ions within the rhizosphere [8]. Phosphate 
solubilizing bacteria unlock the phosphate from the complex 
soil composites and solubilize them with the help of phytase 
enzyme, while AM fungi besides facilitating critical minerals 

modify host root architecture. �ese biofertilizers also secrete 
phytohormones in the host rhizosphere and protect them 
from soil borne pathogens [7,8]. Zinc plays a functional role in 
many physiological processes, in biochemical reactions, such 
as metalloenzymes [3,9], in the biosynthesis of proteins and 
chlorophyll, and in immune responses in animal systems [10]. 
Several metalloenzymes and biochemical reactions require Zn 
as a cofactor in cell metabolism [11]. Among the critical 
elements, nitrogen is an important part of the functional and 
structural part, i.e., proteins, secondary metabolites, 
coenzymes, and other molecules; phosphorus has a major role 
in nucleotide biosynthesis and energy transactions and 
signaling, while potassium regulates cell osmolarity and ion 
exchange [12]. Zinc de�ciency in crops is common and o�en 
represented as zinc hunger [13].

 In part, Zn hunger is prevalent due to the plant’s ine�cacy 
of absorbing and translocating it [14] or soil de�ciency [13]; 
thus, Zn fertilization improves the production and quality of 
produce in several crop plants. �erefore, to mitigate issues 
such as the limited availability of soil nutrients, high rates of 
loss of soil-applied fertilizers, and constraints on nutrient 
delivery to plant organs due to environmental conditions 

during critical growth stages. Foliar fertilization for sustainable 
crop management has recently been well-addressed [15]. 
Fertilization through foliar spray has been proven to alleviate 
micronutrient de�ciencies, reduce toxicity, and avoid 
fertilizer-related pollution [16-19]. Zn-induced phytotoxicity 
can directly reduce photosynthesis [20] or can create nutritional 
imbalance by interacting with other nutrients [21].

 To unleash the full potential of plant performance, 
nanoparticle fertilizer represents a new and e�ective technique 
of nutrient delivery. �is is crucial for creating more sustainable 
crop systems globally [22,23]. Nanoparticles are de�ned as 
particles with a size of less than 100 nm in at least one 
dimension [24]. Improvements in seed germination, seedling 
growth, biomass, total nitrogen content, protein and sugar 
contents, photosynthetic e�ciency, and nutrient uptake are all 
documented as positive impacts of nanoparticles (NPs) on plant 
growth in crops such as cucumber, mung, spinach, wheat, and 
tomato [25-29]. Research shows that NPs can enter plant tissues 
and then move inside a plant’s body systemically [30-32]. 
Among the di�erent NPs used, ZnO NPs are currently the 
fourth most widely used in the world [33]. Due to their unique 
characteristics compared to conventional Zn fertilizers, ZnO 
NPs can also serve as cutting-edge Zn fertilizers. Uncertainty 
exists regarding the process through which ZnO NPs enter 
plants. Studies have demonstrated that foliar ZnO NP and 
ZnSO4 spraying on wheat increased the Zn content in grains 
while leaving no traces of ZnO NP in them [29]. With slower 
delivery of micronutrients and a reduced risk of soil pollution 
and other environmental hazards compared to applying 
chemical fertilizers directly to the soil, nanoscale fertilization 
may be able to prevent the symptoms of phytotoxicity in plants 
[34]. In addition, nanoscale fertilizer application requires a 
lesser amount of fertilizer than conventional ones used through 
soil [35]. Even in stressed regimes, the use of nanofertilizers has 
been proven to have positive impacts on plant growth compared 
to normal  conditions [32,35-40]. However, whether it is a nano 
application, these e�ects depend on concentration.

 �e present research work is based on the hypothesis that 
foliar spraying of ZnO NPs or application of biofertilizers such 
as VAM or AMF and PSBs are more e�cient and promote plant 
growth better than generally used chemical fertilizer 
supplementation like nitrogen (N), phosphorus (P) and 
supplementation with zinc (Zn).

 �erefore, the present study aimed to compare the impacts 
of various soil-applied chemical fertilizers, such as N, P, Zn, 
foliar spray of ZnO NPs, and soil-applied bio-fertilizers such as 
phosphate solubilizing bacteria (PSBs) and arbuscular 
mycorrhizal fungi (AMF), on the growth and biochemical 
responses of mustard cultivars.

Materials and Methods
Experimental site and design
�e present experiment was performed in the Botany 
Department of Tilakdhari College, Jaunpur, state Uttar Pradesh 
(25° 73’ N latitude, 82°68’ E longitude at an elevation of 96 m 
above mean sea level). �e 25 × 25 cm earthen pots were �lled 
with 3 kg of �eld soil with the properties given in Table 1. �e 
recommended dose of fertilizers was mixed with the soil 
present in the pot. �e experiment was conducted under 
ambient environmental conditions in September-February 
2020.

 Pots were placed in a randomized completely block design 
(RCBD) where the experiment consisted of two factors and �ve 
replicates (2×7×5). �rst factor is two varieties of Brassica juncea 
(L.). �e second factor included seven levels of fertilizer 
treatments (control, ZnO NPs, Zn, N, P, PSB, and AMF) and �ve 
replicates for each treatment randomly distributed in block 
(RBD). �e total experimental units were 70(2×7×5=70).

Materials and experimental treatment plan
�e authentic seeds of Brassica juncea (L.) Czern and Coss cv. 
Alankar and Rohini were selected based on previous 
experiments and were procured from the National Seed 
Corporation Ltd., New Delhi, India. �e cultural strains of 
biofertilizers (Glomus intraradices) inoculum and PSB 
Pseudomonas aeruginosa) were procured from the Agriculture 
Department Seed Distribution Unit, District Agriculture O�ce, 
Quarsi Road, Aligarh. �e nanoparticles (ZnO-NPs) were 
purchased from Sigma-Aldrich Chemicals Pvt. Ltd. India. 100 
mM stock solution of ZnO-NPs was prepared by dissolving its 
required amount in 10 ml DDW in a 100 ml volumetric �ask, 
and making up total volume 100 ml by adding DDW. �e 
working concentrations of NPs were prepared by diluting this 
stock solution of ZnO-NPs as per requirement.

 Healthy, uniform-sized seeds were surface sterilized with a 
0.01% solution of mercuric chloride for 5 min to disinfect from 
surface pathogens and then washed repeatedly with double 
distilled water (DDW). To check the percent germination of 
seeds, a germination test was also conducted. Seeds of two 
mustard varieties, Alankar and Rohini, were sown in pot soils. 
�e soil analysis was conducted before the experiment 
presented in Table 1. Eight seeds per pot were sown and then 
thinned to three plants per pot one week a�er germination, 
selecting robust growing similar plants. 

 Among the six treatments (excluding control) of plants, 
three sets were maintained for the two mustard varieties. Five 
pots for each treatment were maintained as replicates (n=5). 
Mustard plants were irrigated with tap water as needed (Figure 1).
1. �e �rst set of plants was foliar sprayed with ZnO NPs (4 

millimoles aqueous solution).
2. For the next two di�erent sets, AM fungus and PSB were 

applied. Fi�y grams of Rhode grass cultured AM fungus; 
Glomus intraradices inoculum, was added to the soil around 
the seed to provide 500 IP (infective propagules) per pot. As 
a PSB, a suspension culture of Pseudomonas aeruginosa was 
used for the treatment of seeds. One milliliter of nutrient 
broth (Mannitol 10g, Yeast extract 1.0g, K2HPO4 0.5g, 

MgSO4.7H2O 0.2g, NaCl 0.1g per liter of DDW) suspension 
contained approximately 1.5×109 cfu per ml of media. Seeds 
were coated with this suspension culture and dried in a cool 
shady place before sowing. 

3. For three di�erent sets, N, P, and Zn were amended in the 
pot soil as per recommended doses of 120, 60, and 25 kg/ha 
taking urea, single superphosphate, and ZnSO4 as fertilizers. 
�e fertilizer requirement per kg pot soil was calculated* as 
72, 104, and 19 mg, respectively.

Methodology
At 60 days a�er sowing (DAS), the plants were sampled to study 
the following growth features.

Growth analysis
�e root and shoot lengths of the two varieties were measured 
using a meter scale. �e ratio of the shoot by root length was 
calculated by dividing the lengths of the two. �e fresh and dry 
mass of roots and shoots was measured with an electronic 
balance. To analyze the dry mass, the uprooted plants (roots and 
shoots) were placed in an oven at 80°C for 72 h and wrapped in 
butter paper. �e dried plants were then weighed to record plant 
dry mass. �e leaf area of randomly selected leaves from each 
variety was determined by the graph paper method of Pandey 
and Singh [41].

Total chlorophyll and proline content in leaves
�e leaf ’s total chlorophyll content was estimated in �nely cut 
fresh leaves following the method of Mackinney [42]. �e leaf 
proline content in fresh tissue was determined by following the 
method of Bates et al. [43].

Activity of Carbonic anhydrase (CA) and Nitrate 
reductase (NR) enzyme
Carbonic anhydrase activity (CA, E.C. 4.2.1.1) and nitrate 
reductase activity (NR, E.C. 1.6.6.1) were determined by 
following Dwivedi and Randhawa [13] and Jaworski [44] in 
fresh leaf samples.

Statistical analysis
�e experiment was conducted according to a simple 
randomized block design (SRBD). Each treatment was 
replicated �ve times (n=5), and three plants per pot were 
maintained where each pot was considered a replicate. 
Treatment means were compared by analysis of variance using 
R ver. 3.1.0 for Windows. �e least signi�cant di�erence (LSD) 
between treatment means was calculated at a 5% probability 
level (p< 0.05). 

Results
Growth parameters
Most of the (bio)fertilizer treatments (ZnO NPs, Zn, N, P, PSBs 
or AMF) promoted the growth (length, fresh mass, dry mass of 
root and shoot and leaf area) parameters in both varieties in a 
treatment-dependent manner at 60 DAS (Figure 2). However, 
the maximum stimulation of most of the growth parameters is 
achieved by ZnO NPs followed by either PSB or AMF. However, 
the Alankar variety outperformed the treatment here. �e root 
dry mass of Alankar for ZnO NPs, PSB, and AMF was 88%, 
62%, and 86%, respectively, while for shoot dry mass it was 83%, 
72%, and 80%, compared to control plants. For the same 
treatments leaf area improvement of Alankar was 35%, 28%, 
and 34%, and for Rohini, it was 33%, 23%, and 28%, 
respectively. �e ratio of the shoot by root length showed 
di�erent responses for the treatments.

Total chlorophyll content in leaves
�e total chlorophyll content (Figure 3A) in leaves increased 
signi�cantly (p≤0.05) when the two varieties were foliar sprayed 
with ZnO NPs. Alankar registered a 28% increase, while Rohini 
re�ected a 19% increase. �e PSB and AMF treatments also 

signi�cantly (p≤0.05) increased the leaf chlorophyll contents by 
28% and 34% in Alankar and 10% and 16% in Rohini, 
respectively, compared to the control plants. No signi�cant (p≤
0.05) increase in leaf chlorophyll level was noticed against 
soil-mediated N, P, and Zn treatments in the two varieties of 
mustard. 

Proline content in leaves
A signi�cant (p≤0.05) increase in leaf proline content (Figure 
3B) was recorded against the leaf-sprayed ZnO NPs and the 
soil-mediated two biofertilizers (PSB and AMF/VAM) and 
nitrogen treatment in the Alankar and Rohini varieties of 
mustard plants. �e data indicated that proline accumulation 
was higher in Alankar than in Rohini against the given 
treatments. For the above treatments, the increase was 46%, 
39%, 42%, and 37%, respectively, for Alankar. For Rohini, the 
increase was lesser, and in the order of ZnO 
NPs>AMF>PSB>N, an insigni�cant increase of proline was 
registered for the treatments of soil-mediated Zn and P 
recorded compared to control plants in the two varieties.

Nitrate reductase (NR) and carbonic anhydrase (CA) 
activity
�e two mustard varieties; Alankar and Rohini, showed a 
signi�cant (p≤0.05) increase in NR and CA activity (Figure 3C 
and 3D) compared to most of the treatments. �e increase in 

the activity of these enzymes against all the treatments of 
chemicals and biofertilizers was higher in Rohini than in 
Alankar. For NR activity, ZnO NP was followed by Zn and N 
treatments in the two varieties, and for CA, it was followed by 
AMF/VAM and PSBs, respectively. For NR activity, the increase 
against ZnO NP treatment was 140% and 111% in Alankar. For 
the Zn and N treatments, however, the increase in NR activity 
was 99% and 72%, respectively, compared to the control plants. 
�e CA activity was 79% and 58% for the two varieties, Alankar 
and Rohini, respectively. 

Discussion
Our agricultural system depends on the supplementation of 
primary nutrients (such as N, P, and K) to maximize crop 
output and support modern agriculture [45]. Mineral ion 
uptake properties show variation among plant species and 
cultivars [46]. In mustard plants, the growing seeds and leaves 
compete for nitrogen, and the size of the nitrogen pool in the 
vegetative sections largely determines seed set, seed growth, and 

�nal seed production [47,48]. Nitrogen supply in�uences 
several growth parameters, produces more robust growth and 
development, and increases plant height, number of �owering 
branches, total plant weight, and leaf area, all of which 
cumulatively enhance the yield output [49,50]. Brassica growth 
and yield improved with the application of 100–130 kg/ha 
nitrogen, while yield also increased at the same rate with the 
application of phosphorus [51-54]. However, this demand is 
typically higher in arid and semiarid environments [55,56]. As 
stated above, phosphorus has a greater impact on yield than 
nitrogen and potassium. Phosphorus is a component of nucleic 
acids, cell signaling, and membrane phospholipids. It also plays 
a role in energy metabolism, cell division, and the formation of 
several coenzymes, including ATP, NAD(P)H, and GTP [57]. P 
de�ciency manifests as visible purplish pigmentation on leaves, 
young, stunted stems, early leaf shedding, and reduced seed 
output [58,59]. Single, double, and triple superphosphate (SSP, 
DSP, TSP), ammonium phosphate, dicalcium phosphate, basic 
slag, calcium meta-phosphate, rock phosphate, bone meal, etc., 
are the main sources of plant phosphorus [60]. �e application 
of chemical fertilizers also poses a serious threat to nitrogen and 
other chemical pollution in soil and water bodies, leading to 
eutrophication [61]. To avoid nitrogen pollution and 
eutrophication of nutrients in water bodies, the application of 
nanosized nutrients, such as nanofertilizers, nanobiochar, and 
essential element nanoparticles, through foliar spraying has 
become a trend in recent studies because it minimizes the loss 
of nutrients and allows them to be e�ciently absorbed by plant 
leaves due to their nano size, which saves the environment and 
expenses of farmers [18, 62].

 �e �ndings of the present study demonstrated that the use 
of ZnO NPs improved the growth of two varieties, including the 
root and shoot length, their ratio, fresh and dry weight, and leaf 
area (Figure 2). Signi�cant di�erences were seen in the foliar 
delivery of ZnO NPs compared to soil amendment of Zn, which 
may be a cost-e�ective method for providing nutrients to the 
plants. A�er nitrogen, phosphorus, and potassium, Zn is 
regarded as the nutrient that limits yield the most both globally 
and in Indian soils [63]. According to estimates, 36.5% of 
Indian soils lack Zn [64]. While it is normal practice in modern 
agriculture to add fertilizers to complement natural soil fertility, 
temperate and tropical soils frequently continue to be low in 
micronutrients, particularly Zn [4,65]. Two forms of Zn 
in�uenced mustard growth di�erently. In general, foliar 
treatments with 4 mM ZnO NPs brought signi�cant 
improvement in growth parameters compared to Zn, N, or P 
given through soil and control plants. �e growth promotion 
was even higher than that with biofertilizers, PSBs, and AM 
fungi. Zinc from ZnO NPs can accumulate in the leaves through 
foliar feeding, making these NPs potentially useful sources of 
Zn for plants to employ in metabolic processes [66,67]. 
According to a recent study by [68], the predominant channel 
for wheat and sun�ower (Helianthus annuus L.) to absorb ZnO 
NPs under experimental conditions was through the leaf 
cuticle. In addition, ZnO NPs are used as nanofertilizers, which 
may be a more e�ective and slow-releasing source of Zn than 
conventional fertilizers or other sources of Zn [66,69,70]. 
According to a study by [71], applying ZnO NPs to the soil at 
various concentrations increased the Zn content of wheat 
tissues under normal or water-stress conditions. A�erwards, 
Adrees et al. [72] demonstrated that foliar exposure to ZnO NPs 
enhanced wheat development through foliar application. �e 

larger weights of the plants may be a factor in the enhanced 
availability of Zn as NPs compared to Zn applied to the soil. �e 
mustard plants’ growth and antioxidant enzyme activities were 
improved when ZnO NPs were sprayed [73]. �e intensi�cation 
of the metabolism aided by Zn is what causes the rise in dry 
mass. Enzymes, including dehydrogenases, aldolases, 
isomerases, transphosphorylases, and RNA and DNA 
polymerases, all require zinc to function [74]. Moreover, it 
contributes to tryptophan production, cell division, membrane 
structure maintenance, and photosynthesis and functions as a 
regulatory cofactor in protein synthesis [3,9]. Several species 
have been the subject of ZnO NPs experiments, and the overall 
bene�cial interactions have been previously characterized 
[35,74-76]. An increase in the FW and DW of seedlings growing 
in the presence of ZnO NPs was observed in earlier studies [77]. 
Reduced growth and plant biomass, restriction of cell 
elongation and division, wilting, curling, and rolling of young 
leaves, chlorotic and necrotic leaf tips, and suppression of root 
growth are all signs of Zn toxicity [78,79]. According to the 
�ndings of Rossi et al. [80] on co�ee plants treated with ZnO 
NPs, the photosynthetic apparatus was enhanced. In the present 
study, positive interactions were found between ZnO NPs and 
the net carbon assimilation rate and stomatal conductance. 

 In the present study, the e�cacy of treatments followed the 
pattern of ZnO NPs>AMF>PSBs>N and increased the leaf 
chlorophyll level, proline content, NR, and CA activity (Figure 
3 A-D). Nitrogen is a key nutrient component that gives crops 
their lush green color by increasing the amount of chlorophyll 
in the leaves and boosts biomass by increasing carbon �xation. 
However, depending on factors such as soil type, climate, 
management practices, when nitrogen is applied, cultivars, etc., 
nitrogen fertilizer needs can vary greatly [81]. Zn is a cofactor of 
carbonic anhydrase, which raises the amount of CO2 in the 
chloroplast and, as a result, also increases the ability of the 
Rubisco enzyme to carboxylate [82]. Di�erent macro-and 
micronutrient uptake can be a�ected by zinc’s e�ects on 
absorption [83,84]. Zn typically causes severe Fe de�ciency 
chlorosis in dicots on acidic soils. Crops such as lettuce, 
mustard, and beet are particularly vulnerable to too much soil 
Zn [85]. Zn transport and uptake by leaves were also 
investigated. Typically, ZnO NPs enter the leaf system through 
wounds, hydathodes, cuticle penetration, and stomata [10]. 
�is is evident from the data, which reveal that ZnO NPs 
markedly increased Zn levels in the leaf, while ZnSO4 did not 
signi�cantly accumulate when compared to the control. It 
results from the e�ects of adding P and other minerals, as well 
as phytohormones secreted by PSBs and AM fungi in the root 
zone. Positive e�ects of ZnO NPs were also studied on the seed 
germination and vegetative growth in di�erent crops of Arachis 
hypogea [86], Vigna radiata [87,88], Cicer arietinum [89], 
Glycine max [90], Helianthus annuus [91], Lycopersicon 
esculentum [92], Sesamum indicum [93], Brassica nigra [94] and 
Brassica juncea [95]. PGPR, such as PSB, proves useful in 
enhancing crop productivity by making nutrients more 
bioavailable in the soil with chemical secretion in the 
rhizosphere [96]. Alone and combination of AM fungi with 
biocontrol fungi or nanoparticles also prove e�ective in 
increasing the crop productivity in plants by increasing the 
phosphorus and other nutrients available in the soil by releasing 
chemicals in the soil that change the pH and amount of 
available organic matter content in the soil [97-99]. 
Combinations of PGPR and AMF improved the crop 

productivity in various plants and also helped to manage 
growth under stress conditions [100-103]. Although the 
interaction of Glomus species with mustard plants is not 
common, recent studies clearly show that it helps the plants to 
increase their resistance against pathogens and increase crop 
productivity by regulating enzymatic activities in plants and 
increasing the amount of nutrients and organic matter in the 
soil [104-106]. 

Conclusions 
Foliar exposure to ZnO NPs may be thought of as both an 
e�cient and di�erent method to increase productivity 
compared to other treatments. Nanoparticles have microscopic 
size and large surface area, which help maximize their uptake 
and translocation as nutrients in plants via foliar spray. As a 
result, ZnO NPs had more favorable e�ects on plant growth, 
morphology, development, physiology, and metabolism than 
traditional Zn salt because nanoparticles induce the genes 
involved in nutrient assimilation pathways. It may also be 
crucial to research how ZnO NPs a�ect other nutrients 
necessary for plant health as well as the general ecology of the 
rhizosphere. When compared to chemical fertilizer applications 
of P or even N, biofertilizers such as AMF/VAM and PSBs are 
also preferable because their chemical activity solubilizes and 
increases the bioavailability of nutrients in the soil, ultimately 
enhancing the growth of the treated plants. Further research is 
required to grow di�erent crop species in the �eld under diverse 
agroclimatic circumstances to determine the cost-e�ectiveness 
and adaptability of foliar ZnO NP exposure.

 However, a future aspect of this research is to determine 
the growth and yield responses of crops upon exposure to the 
combination of nanoparticles and biofertilizers. 
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Mustard (Brassica juncea L.) is one of the important oilseed 
crops grown in the Rabi (winter) season and contributes to 25% 
of the oilseed economy of India [1,2]. �e use of chemical 
fertilizers in arable soil is a routine practice in modern 
agriculture to supplement the depleting nutrients from natural 
soil fertility, among them nitrogen, phosphorus, potassium 
(NPK) and zinc (Zn) are more common [3,4]. Mustard varieties 
also respond to chemical fertilizers, particularly N and P. �e 
recommended dose of chemical fertilizers is crop-speci�c; 
excess or less application may lead to suboptimal production of 
lethal e�ects. Increased population growth and demand for 
food supply required higher use of chemical fertilizers, a costly 
input [5]. Additionally, excess use of these fertilizers polluted all 
three spheres of the environment [6]. Potential substitutes, 
biofertilizers, including arbuscular mycorrhizal fungi (AMF) 
and phosphate-solubilizing bacteria (PSBs), are cost-e�ective, 
pollution-free, renewable, and safe for crops [7]. Arbuscular 
mycorrhizae supplement nitrate and phosphate ions along with 
other metal ions within the rhizosphere [8]. Phosphate 
solubilizing bacteria unlock the phosphate from the complex 
soil composites and solubilize them with the help of phytase 
enzyme, while AM fungi besides facilitating critical minerals 

modify host root architecture. �ese biofertilizers also secrete 
phytohormones in the host rhizosphere and protect them 
from soil borne pathogens [7,8]. Zinc plays a functional role in 
many physiological processes, in biochemical reactions, such 
as metalloenzymes [3,9], in the biosynthesis of proteins and 
chlorophyll, and in immune responses in animal systems [10]. 
Several metalloenzymes and biochemical reactions require Zn 
as a cofactor in cell metabolism [11]. Among the critical 
elements, nitrogen is an important part of the functional and 
structural part, i.e., proteins, secondary metabolites, 
coenzymes, and other molecules; phosphorus has a major role 
in nucleotide biosynthesis and energy transactions and 
signaling, while potassium regulates cell osmolarity and ion 
exchange [12]. Zinc de�ciency in crops is common and o�en 
represented as zinc hunger [13].

 In part, Zn hunger is prevalent due to the plant’s ine�cacy 
of absorbing and translocating it [14] or soil de�ciency [13]; 
thus, Zn fertilization improves the production and quality of 
produce in several crop plants. �erefore, to mitigate issues 
such as the limited availability of soil nutrients, high rates of 
loss of soil-applied fertilizers, and constraints on nutrient 
delivery to plant organs due to environmental conditions 

during critical growth stages. Foliar fertilization for sustainable 
crop management has recently been well-addressed [15]. 
Fertilization through foliar spray has been proven to alleviate 
micronutrient de�ciencies, reduce toxicity, and avoid 
fertilizer-related pollution [16-19]. Zn-induced phytotoxicity 
can directly reduce photosynthesis [20] or can create nutritional 
imbalance by interacting with other nutrients [21].

 To unleash the full potential of plant performance, 
nanoparticle fertilizer represents a new and e�ective technique 
of nutrient delivery. �is is crucial for creating more sustainable 
crop systems globally [22,23]. Nanoparticles are de�ned as 
particles with a size of less than 100 nm in at least one 
dimension [24]. Improvements in seed germination, seedling 
growth, biomass, total nitrogen content, protein and sugar 
contents, photosynthetic e�ciency, and nutrient uptake are all 
documented as positive impacts of nanoparticles (NPs) on plant 
growth in crops such as cucumber, mung, spinach, wheat, and 
tomato [25-29]. Research shows that NPs can enter plant tissues 
and then move inside a plant’s body systemically [30-32]. 
Among the di�erent NPs used, ZnO NPs are currently the 
fourth most widely used in the world [33]. Due to their unique 
characteristics compared to conventional Zn fertilizers, ZnO 
NPs can also serve as cutting-edge Zn fertilizers. Uncertainty 
exists regarding the process through which ZnO NPs enter 
plants. Studies have demonstrated that foliar ZnO NP and 
ZnSO4 spraying on wheat increased the Zn content in grains 
while leaving no traces of ZnO NP in them [29]. With slower 
delivery of micronutrients and a reduced risk of soil pollution 
and other environmental hazards compared to applying 
chemical fertilizers directly to the soil, nanoscale fertilization 
may be able to prevent the symptoms of phytotoxicity in plants 
[34]. In addition, nanoscale fertilizer application requires a 
lesser amount of fertilizer than conventional ones used through 
soil [35]. Even in stressed regimes, the use of nanofertilizers has 
been proven to have positive impacts on plant growth compared 
to normal  conditions [32,35-40]. However, whether it is a nano 
application, these e�ects depend on concentration.

 �e present research work is based on the hypothesis that 
foliar spraying of ZnO NPs or application of biofertilizers such 
as VAM or AMF and PSBs are more e�cient and promote plant 
growth better than generally used chemical fertilizer 
supplementation like nitrogen (N), phosphorus (P) and 
supplementation with zinc (Zn).

 �erefore, the present study aimed to compare the impacts 
of various soil-applied chemical fertilizers, such as N, P, Zn, 
foliar spray of ZnO NPs, and soil-applied bio-fertilizers such as 
phosphate solubilizing bacteria (PSBs) and arbuscular 
mycorrhizal fungi (AMF), on the growth and biochemical 
responses of mustard cultivars.

Materials and Methods
Experimental site and design
�e present experiment was performed in the Botany 
Department of Tilakdhari College, Jaunpur, state Uttar Pradesh 
(25° 73’ N latitude, 82°68’ E longitude at an elevation of 96 m 
above mean sea level). �e 25 × 25 cm earthen pots were �lled 
with 3 kg of �eld soil with the properties given in Table 1. �e 
recommended dose of fertilizers was mixed with the soil 
present in the pot. �e experiment was conducted under 
ambient environmental conditions in September-February 
2020.

 Pots were placed in a randomized completely block design 
(RCBD) where the experiment consisted of two factors and �ve 
replicates (2×7×5). �rst factor is two varieties of Brassica juncea 
(L.). �e second factor included seven levels of fertilizer 
treatments (control, ZnO NPs, Zn, N, P, PSB, and AMF) and �ve 
replicates for each treatment randomly distributed in block 
(RBD). �e total experimental units were 70(2×7×5=70).

Materials and experimental treatment plan
�e authentic seeds of Brassica juncea (L.) Czern and Coss cv. 
Alankar and Rohini were selected based on previous 
experiments and were procured from the National Seed 
Corporation Ltd., New Delhi, India. �e cultural strains of 
biofertilizers (Glomus intraradices) inoculum and PSB 
Pseudomonas aeruginosa) were procured from the Agriculture 
Department Seed Distribution Unit, District Agriculture O�ce, 
Quarsi Road, Aligarh. �e nanoparticles (ZnO-NPs) were 
purchased from Sigma-Aldrich Chemicals Pvt. Ltd. India. 100 
mM stock solution of ZnO-NPs was prepared by dissolving its 
required amount in 10 ml DDW in a 100 ml volumetric �ask, 
and making up total volume 100 ml by adding DDW. �e 
working concentrations of NPs were prepared by diluting this 
stock solution of ZnO-NPs as per requirement.

 Healthy, uniform-sized seeds were surface sterilized with a 
0.01% solution of mercuric chloride for 5 min to disinfect from 
surface pathogens and then washed repeatedly with double 
distilled water (DDW). To check the percent germination of 
seeds, a germination test was also conducted. Seeds of two 
mustard varieties, Alankar and Rohini, were sown in pot soils. 
�e soil analysis was conducted before the experiment 
presented in Table 1. Eight seeds per pot were sown and then 
thinned to three plants per pot one week a�er germination, 
selecting robust growing similar plants. 

 Among the six treatments (excluding control) of plants, 
three sets were maintained for the two mustard varieties. Five 
pots for each treatment were maintained as replicates (n=5). 
Mustard plants were irrigated with tap water as needed (Figure 1).
1. �e �rst set of plants was foliar sprayed with ZnO NPs (4 

millimoles aqueous solution).
2. For the next two di�erent sets, AM fungus and PSB were 

applied. Fi�y grams of Rhode grass cultured AM fungus; 
Glomus intraradices inoculum, was added to the soil around 
the seed to provide 500 IP (infective propagules) per pot. As 
a PSB, a suspension culture of Pseudomonas aeruginosa was 
used for the treatment of seeds. One milliliter of nutrient 
broth (Mannitol 10g, Yeast extract 1.0g, K2HPO4 0.5g, 

MgSO4.7H2O 0.2g, NaCl 0.1g per liter of DDW) suspension 
contained approximately 1.5×109 cfu per ml of media. Seeds 
were coated with this suspension culture and dried in a cool 
shady place before sowing. 

3. For three di�erent sets, N, P, and Zn were amended in the 
pot soil as per recommended doses of 120, 60, and 25 kg/ha 
taking urea, single superphosphate, and ZnSO4 as fertilizers. 
�e fertilizer requirement per kg pot soil was calculated* as 
72, 104, and 19 mg, respectively.

Methodology
At 60 days a�er sowing (DAS), the plants were sampled to study 
the following growth features.

Growth analysis
�e root and shoot lengths of the two varieties were measured 
using a meter scale. �e ratio of the shoot by root length was 
calculated by dividing the lengths of the two. �e fresh and dry 
mass of roots and shoots was measured with an electronic 
balance. To analyze the dry mass, the uprooted plants (roots and 
shoots) were placed in an oven at 80°C for 72 h and wrapped in 
butter paper. �e dried plants were then weighed to record plant 
dry mass. �e leaf area of randomly selected leaves from each 
variety was determined by the graph paper method of Pandey 
and Singh [41].

Total chlorophyll and proline content in leaves
�e leaf ’s total chlorophyll content was estimated in �nely cut 
fresh leaves following the method of Mackinney [42]. �e leaf 
proline content in fresh tissue was determined by following the 
method of Bates et al. [43].

Activity of Carbonic anhydrase (CA) and Nitrate 
reductase (NR) enzyme
Carbonic anhydrase activity (CA, E.C. 4.2.1.1) and nitrate 
reductase activity (NR, E.C. 1.6.6.1) were determined by 
following Dwivedi and Randhawa [13] and Jaworski [44] in 
fresh leaf samples.

Statistical analysis
�e experiment was conducted according to a simple 
randomized block design (SRBD). Each treatment was 
replicated �ve times (n=5), and three plants per pot were 
maintained where each pot was considered a replicate. 
Treatment means were compared by analysis of variance using 
R ver. 3.1.0 for Windows. �e least signi�cant di�erence (LSD) 
between treatment means was calculated at a 5% probability 
level (p< 0.05). 

Results
Growth parameters
Most of the (bio)fertilizer treatments (ZnO NPs, Zn, N, P, PSBs 
or AMF) promoted the growth (length, fresh mass, dry mass of 
root and shoot and leaf area) parameters in both varieties in a 
treatment-dependent manner at 60 DAS (Figure 2). However, 
the maximum stimulation of most of the growth parameters is 
achieved by ZnO NPs followed by either PSB or AMF. However, 
the Alankar variety outperformed the treatment here. �e root 
dry mass of Alankar for ZnO NPs, PSB, and AMF was 88%, 
62%, and 86%, respectively, while for shoot dry mass it was 83%, 
72%, and 80%, compared to control plants. For the same 
treatments leaf area improvement of Alankar was 35%, 28%, 
and 34%, and for Rohini, it was 33%, 23%, and 28%, 
respectively. �e ratio of the shoot by root length showed 
di�erent responses for the treatments.

Total chlorophyll content in leaves
�e total chlorophyll content (Figure 3A) in leaves increased 
signi�cantly (p≤0.05) when the two varieties were foliar sprayed 
with ZnO NPs. Alankar registered a 28% increase, while Rohini 
re�ected a 19% increase. �e PSB and AMF treatments also 

signi�cantly (p≤0.05) increased the leaf chlorophyll contents by 
28% and 34% in Alankar and 10% and 16% in Rohini, 
respectively, compared to the control plants. No signi�cant (p≤
0.05) increase in leaf chlorophyll level was noticed against 
soil-mediated N, P, and Zn treatments in the two varieties of 
mustard. 

Proline content in leaves
A signi�cant (p≤0.05) increase in leaf proline content (Figure 
3B) was recorded against the leaf-sprayed ZnO NPs and the 
soil-mediated two biofertilizers (PSB and AMF/VAM) and 
nitrogen treatment in the Alankar and Rohini varieties of 
mustard plants. �e data indicated that proline accumulation 
was higher in Alankar than in Rohini against the given 
treatments. For the above treatments, the increase was 46%, 
39%, 42%, and 37%, respectively, for Alankar. For Rohini, the 
increase was lesser, and in the order of ZnO 
NPs>AMF>PSB>N, an insigni�cant increase of proline was 
registered for the treatments of soil-mediated Zn and P 
recorded compared to control plants in the two varieties.

Nitrate reductase (NR) and carbonic anhydrase (CA) 
activity
�e two mustard varieties; Alankar and Rohini, showed a 
signi�cant (p≤0.05) increase in NR and CA activity (Figure 3C 
and 3D) compared to most of the treatments. �e increase in 

the activity of these enzymes against all the treatments of 
chemicals and biofertilizers was higher in Rohini than in 
Alankar. For NR activity, ZnO NP was followed by Zn and N 
treatments in the two varieties, and for CA, it was followed by 
AMF/VAM and PSBs, respectively. For NR activity, the increase 
against ZnO NP treatment was 140% and 111% in Alankar. For 
the Zn and N treatments, however, the increase in NR activity 
was 99% and 72%, respectively, compared to the control plants. 
�e CA activity was 79% and 58% for the two varieties, Alankar 
and Rohini, respectively. 

Discussion
Our agricultural system depends on the supplementation of 
primary nutrients (such as N, P, and K) to maximize crop 
output and support modern agriculture [45]. Mineral ion 
uptake properties show variation among plant species and 
cultivars [46]. In mustard plants, the growing seeds and leaves 
compete for nitrogen, and the size of the nitrogen pool in the 
vegetative sections largely determines seed set, seed growth, and 

�nal seed production [47,48]. Nitrogen supply in�uences 
several growth parameters, produces more robust growth and 
development, and increases plant height, number of �owering 
branches, total plant weight, and leaf area, all of which 
cumulatively enhance the yield output [49,50]. Brassica growth 
and yield improved with the application of 100–130 kg/ha 
nitrogen, while yield also increased at the same rate with the 
application of phosphorus [51-54]. However, this demand is 
typically higher in arid and semiarid environments [55,56]. As 
stated above, phosphorus has a greater impact on yield than 
nitrogen and potassium. Phosphorus is a component of nucleic 
acids, cell signaling, and membrane phospholipids. It also plays 
a role in energy metabolism, cell division, and the formation of 
several coenzymes, including ATP, NAD(P)H, and GTP [57]. P 
de�ciency manifests as visible purplish pigmentation on leaves, 
young, stunted stems, early leaf shedding, and reduced seed 
output [58,59]. Single, double, and triple superphosphate (SSP, 
DSP, TSP), ammonium phosphate, dicalcium phosphate, basic 
slag, calcium meta-phosphate, rock phosphate, bone meal, etc., 
are the main sources of plant phosphorus [60]. �e application 
of chemical fertilizers also poses a serious threat to nitrogen and 
other chemical pollution in soil and water bodies, leading to 
eutrophication [61]. To avoid nitrogen pollution and 
eutrophication of nutrients in water bodies, the application of 
nanosized nutrients, such as nanofertilizers, nanobiochar, and 
essential element nanoparticles, through foliar spraying has 
become a trend in recent studies because it minimizes the loss 
of nutrients and allows them to be e�ciently absorbed by plant 
leaves due to their nano size, which saves the environment and 
expenses of farmers [18, 62].

 �e �ndings of the present study demonstrated that the use 
of ZnO NPs improved the growth of two varieties, including the 
root and shoot length, their ratio, fresh and dry weight, and leaf 
area (Figure 2). Signi�cant di�erences were seen in the foliar 
delivery of ZnO NPs compared to soil amendment of Zn, which 
may be a cost-e�ective method for providing nutrients to the 
plants. A�er nitrogen, phosphorus, and potassium, Zn is 
regarded as the nutrient that limits yield the most both globally 
and in Indian soils [63]. According to estimates, 36.5% of 
Indian soils lack Zn [64]. While it is normal practice in modern 
agriculture to add fertilizers to complement natural soil fertility, 
temperate and tropical soils frequently continue to be low in 
micronutrients, particularly Zn [4,65]. Two forms of Zn 
in�uenced mustard growth di�erently. In general, foliar 
treatments with 4 mM ZnO NPs brought signi�cant 
improvement in growth parameters compared to Zn, N, or P 
given through soil and control plants. �e growth promotion 
was even higher than that with biofertilizers, PSBs, and AM 
fungi. Zinc from ZnO NPs can accumulate in the leaves through 
foliar feeding, making these NPs potentially useful sources of 
Zn for plants to employ in metabolic processes [66,67]. 
According to a recent study by [68], the predominant channel 
for wheat and sun�ower (Helianthus annuus L.) to absorb ZnO 
NPs under experimental conditions was through the leaf 
cuticle. In addition, ZnO NPs are used as nanofertilizers, which 
may be a more e�ective and slow-releasing source of Zn than 
conventional fertilizers or other sources of Zn [66,69,70]. 
According to a study by [71], applying ZnO NPs to the soil at 
various concentrations increased the Zn content of wheat 
tissues under normal or water-stress conditions. A�erwards, 
Adrees et al. [72] demonstrated that foliar exposure to ZnO NPs 
enhanced wheat development through foliar application. �e 

larger weights of the plants may be a factor in the enhanced 
availability of Zn as NPs compared to Zn applied to the soil. �e 
mustard plants’ growth and antioxidant enzyme activities were 
improved when ZnO NPs were sprayed [73]. �e intensi�cation 
of the metabolism aided by Zn is what causes the rise in dry 
mass. Enzymes, including dehydrogenases, aldolases, 
isomerases, transphosphorylases, and RNA and DNA 
polymerases, all require zinc to function [74]. Moreover, it 
contributes to tryptophan production, cell division, membrane 
structure maintenance, and photosynthesis and functions as a 
regulatory cofactor in protein synthesis [3,9]. Several species 
have been the subject of ZnO NPs experiments, and the overall 
bene�cial interactions have been previously characterized 
[35,74-76]. An increase in the FW and DW of seedlings growing 
in the presence of ZnO NPs was observed in earlier studies [77]. 
Reduced growth and plant biomass, restriction of cell 
elongation and division, wilting, curling, and rolling of young 
leaves, chlorotic and necrotic leaf tips, and suppression of root 
growth are all signs of Zn toxicity [78,79]. According to the 
�ndings of Rossi et al. [80] on co�ee plants treated with ZnO 
NPs, the photosynthetic apparatus was enhanced. In the present 
study, positive interactions were found between ZnO NPs and 
the net carbon assimilation rate and stomatal conductance. 

 In the present study, the e�cacy of treatments followed the 
pattern of ZnO NPs>AMF>PSBs>N and increased the leaf 
chlorophyll level, proline content, NR, and CA activity (Figure 
3 A-D). Nitrogen is a key nutrient component that gives crops 
their lush green color by increasing the amount of chlorophyll 
in the leaves and boosts biomass by increasing carbon �xation. 
However, depending on factors such as soil type, climate, 
management practices, when nitrogen is applied, cultivars, etc., 
nitrogen fertilizer needs can vary greatly [81]. Zn is a cofactor of 
carbonic anhydrase, which raises the amount of CO2 in the 
chloroplast and, as a result, also increases the ability of the 
Rubisco enzyme to carboxylate [82]. Di�erent macro-and 
micronutrient uptake can be a�ected by zinc’s e�ects on 
absorption [83,84]. Zn typically causes severe Fe de�ciency 
chlorosis in dicots on acidic soils. Crops such as lettuce, 
mustard, and beet are particularly vulnerable to too much soil 
Zn [85]. Zn transport and uptake by leaves were also 
investigated. Typically, ZnO NPs enter the leaf system through 
wounds, hydathodes, cuticle penetration, and stomata [10]. 
�is is evident from the data, which reveal that ZnO NPs 
markedly increased Zn levels in the leaf, while ZnSO4 did not 
signi�cantly accumulate when compared to the control. It 
results from the e�ects of adding P and other minerals, as well 
as phytohormones secreted by PSBs and AM fungi in the root 
zone. Positive e�ects of ZnO NPs were also studied on the seed 
germination and vegetative growth in di�erent crops of Arachis 
hypogea [86], Vigna radiata [87,88], Cicer arietinum [89], 
Glycine max [90], Helianthus annuus [91], Lycopersicon 
esculentum [92], Sesamum indicum [93], Brassica nigra [94] and 
Brassica juncea [95]. PGPR, such as PSB, proves useful in 
enhancing crop productivity by making nutrients more 
bioavailable in the soil with chemical secretion in the 
rhizosphere [96]. Alone and combination of AM fungi with 
biocontrol fungi or nanoparticles also prove e�ective in 
increasing the crop productivity in plants by increasing the 
phosphorus and other nutrients available in the soil by releasing 
chemicals in the soil that change the pH and amount of 
available organic matter content in the soil [97-99]. 
Combinations of PGPR and AMF improved the crop 

productivity in various plants and also helped to manage 
growth under stress conditions [100-103]. Although the 
interaction of Glomus species with mustard plants is not 
common, recent studies clearly show that it helps the plants to 
increase their resistance against pathogens and increase crop 
productivity by regulating enzymatic activities in plants and 
increasing the amount of nutrients and organic matter in the 
soil [104-106]. 

Conclusions 
Foliar exposure to ZnO NPs may be thought of as both an 
e�cient and di�erent method to increase productivity 
compared to other treatments. Nanoparticles have microscopic 
size and large surface area, which help maximize their uptake 
and translocation as nutrients in plants via foliar spray. As a 
result, ZnO NPs had more favorable e�ects on plant growth, 
morphology, development, physiology, and metabolism than 
traditional Zn salt because nanoparticles induce the genes 
involved in nutrient assimilation pathways. It may also be 
crucial to research how ZnO NPs a�ect other nutrients 
necessary for plant health as well as the general ecology of the 
rhizosphere. When compared to chemical fertilizer applications 
of P or even N, biofertilizers such as AMF/VAM and PSBs are 
also preferable because their chemical activity solubilizes and 
increases the bioavailability of nutrients in the soil, ultimately 
enhancing the growth of the treated plants. Further research is 
required to grow di�erent crop species in the �eld under diverse 
agroclimatic circumstances to determine the cost-e�ectiveness 
and adaptability of foliar ZnO NP exposure.

 However, a future aspect of this research is to determine 
the growth and yield responses of crops upon exposure to the 
combination of nanoparticles and biofertilizers. 
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Mustard (Brassica juncea L.) is one of the important oilseed 
crops grown in the Rabi (winter) season and contributes to 25% 
of the oilseed economy of India [1,2]. �e use of chemical 
fertilizers in arable soil is a routine practice in modern 
agriculture to supplement the depleting nutrients from natural 
soil fertility, among them nitrogen, phosphorus, potassium 
(NPK) and zinc (Zn) are more common [3,4]. Mustard varieties 
also respond to chemical fertilizers, particularly N and P. �e 
recommended dose of chemical fertilizers is crop-speci�c; 
excess or less application may lead to suboptimal production of 
lethal e�ects. Increased population growth and demand for 
food supply required higher use of chemical fertilizers, a costly 
input [5]. Additionally, excess use of these fertilizers polluted all 
three spheres of the environment [6]. Potential substitutes, 
biofertilizers, including arbuscular mycorrhizal fungi (AMF) 
and phosphate-solubilizing bacteria (PSBs), are cost-e�ective, 
pollution-free, renewable, and safe for crops [7]. Arbuscular 
mycorrhizae supplement nitrate and phosphate ions along with 
other metal ions within the rhizosphere [8]. Phosphate 
solubilizing bacteria unlock the phosphate from the complex 
soil composites and solubilize them with the help of phytase 
enzyme, while AM fungi besides facilitating critical minerals 

modify host root architecture. �ese biofertilizers also secrete 
phytohormones in the host rhizosphere and protect them 
from soil borne pathogens [7,8]. Zinc plays a functional role in 
many physiological processes, in biochemical reactions, such 
as metalloenzymes [3,9], in the biosynthesis of proteins and 
chlorophyll, and in immune responses in animal systems [10]. 
Several metalloenzymes and biochemical reactions require Zn 
as a cofactor in cell metabolism [11]. Among the critical 
elements, nitrogen is an important part of the functional and 
structural part, i.e., proteins, secondary metabolites, 
coenzymes, and other molecules; phosphorus has a major role 
in nucleotide biosynthesis and energy transactions and 
signaling, while potassium regulates cell osmolarity and ion 
exchange [12]. Zinc de�ciency in crops is common and o�en 
represented as zinc hunger [13].

 In part, Zn hunger is prevalent due to the plant’s ine�cacy 
of absorbing and translocating it [14] or soil de�ciency [13]; 
thus, Zn fertilization improves the production and quality of 
produce in several crop plants. �erefore, to mitigate issues 
such as the limited availability of soil nutrients, high rates of 
loss of soil-applied fertilizers, and constraints on nutrient 
delivery to plant organs due to environmental conditions 

during critical growth stages. Foliar fertilization for sustainable 
crop management has recently been well-addressed [15]. 
Fertilization through foliar spray has been proven to alleviate 
micronutrient de�ciencies, reduce toxicity, and avoid 
fertilizer-related pollution [16-19]. Zn-induced phytotoxicity 
can directly reduce photosynthesis [20] or can create nutritional 
imbalance by interacting with other nutrients [21].

 To unleash the full potential of plant performance, 
nanoparticle fertilizer represents a new and e�ective technique 
of nutrient delivery. �is is crucial for creating more sustainable 
crop systems globally [22,23]. Nanoparticles are de�ned as 
particles with a size of less than 100 nm in at least one 
dimension [24]. Improvements in seed germination, seedling 
growth, biomass, total nitrogen content, protein and sugar 
contents, photosynthetic e�ciency, and nutrient uptake are all 
documented as positive impacts of nanoparticles (NPs) on plant 
growth in crops such as cucumber, mung, spinach, wheat, and 
tomato [25-29]. Research shows that NPs can enter plant tissues 
and then move inside a plant’s body systemically [30-32]. 
Among the di�erent NPs used, ZnO NPs are currently the 
fourth most widely used in the world [33]. Due to their unique 
characteristics compared to conventional Zn fertilizers, ZnO 
NPs can also serve as cutting-edge Zn fertilizers. Uncertainty 
exists regarding the process through which ZnO NPs enter 
plants. Studies have demonstrated that foliar ZnO NP and 
ZnSO4 spraying on wheat increased the Zn content in grains 
while leaving no traces of ZnO NP in them [29]. With slower 
delivery of micronutrients and a reduced risk of soil pollution 
and other environmental hazards compared to applying 
chemical fertilizers directly to the soil, nanoscale fertilization 
may be able to prevent the symptoms of phytotoxicity in plants 
[34]. In addition, nanoscale fertilizer application requires a 
lesser amount of fertilizer than conventional ones used through 
soil [35]. Even in stressed regimes, the use of nanofertilizers has 
been proven to have positive impacts on plant growth compared 
to normal  conditions [32,35-40]. However, whether it is a nano 
application, these e�ects depend on concentration.

 �e present research work is based on the hypothesis that 
foliar spraying of ZnO NPs or application of biofertilizers such 
as VAM or AMF and PSBs are more e�cient and promote plant 
growth better than generally used chemical fertilizer 
supplementation like nitrogen (N), phosphorus (P) and 
supplementation with zinc (Zn).

 �erefore, the present study aimed to compare the impacts 
of various soil-applied chemical fertilizers, such as N, P, Zn, 
foliar spray of ZnO NPs, and soil-applied bio-fertilizers such as 
phosphate solubilizing bacteria (PSBs) and arbuscular 
mycorrhizal fungi (AMF), on the growth and biochemical 
responses of mustard cultivars.

Materials and Methods
Experimental site and design
�e present experiment was performed in the Botany 
Department of Tilakdhari College, Jaunpur, state Uttar Pradesh 
(25° 73’ N latitude, 82°68’ E longitude at an elevation of 96 m 
above mean sea level). �e 25 × 25 cm earthen pots were �lled 
with 3 kg of �eld soil with the properties given in Table 1. �e 
recommended dose of fertilizers was mixed with the soil 
present in the pot. �e experiment was conducted under 
ambient environmental conditions in September-February 
2020.

 Pots were placed in a randomized completely block design 
(RCBD) where the experiment consisted of two factors and �ve 
replicates (2×7×5). �rst factor is two varieties of Brassica juncea 
(L.). �e second factor included seven levels of fertilizer 
treatments (control, ZnO NPs, Zn, N, P, PSB, and AMF) and �ve 
replicates for each treatment randomly distributed in block 
(RBD). �e total experimental units were 70(2×7×5=70).

Materials and experimental treatment plan
�e authentic seeds of Brassica juncea (L.) Czern and Coss cv. 
Alankar and Rohini were selected based on previous 
experiments and were procured from the National Seed 
Corporation Ltd., New Delhi, India. �e cultural strains of 
biofertilizers (Glomus intraradices) inoculum and PSB 
Pseudomonas aeruginosa) were procured from the Agriculture 
Department Seed Distribution Unit, District Agriculture O�ce, 
Quarsi Road, Aligarh. �e nanoparticles (ZnO-NPs) were 
purchased from Sigma-Aldrich Chemicals Pvt. Ltd. India. 100 
mM stock solution of ZnO-NPs was prepared by dissolving its 
required amount in 10 ml DDW in a 100 ml volumetric �ask, 
and making up total volume 100 ml by adding DDW. �e 
working concentrations of NPs were prepared by diluting this 
stock solution of ZnO-NPs as per requirement.

 Healthy, uniform-sized seeds were surface sterilized with a 
0.01% solution of mercuric chloride for 5 min to disinfect from 
surface pathogens and then washed repeatedly with double 
distilled water (DDW). To check the percent germination of 
seeds, a germination test was also conducted. Seeds of two 
mustard varieties, Alankar and Rohini, were sown in pot soils. 
�e soil analysis was conducted before the experiment 
presented in Table 1. Eight seeds per pot were sown and then 
thinned to three plants per pot one week a�er germination, 
selecting robust growing similar plants. 

 Among the six treatments (excluding control) of plants, 
three sets were maintained for the two mustard varieties. Five 
pots for each treatment were maintained as replicates (n=5). 
Mustard plants were irrigated with tap water as needed (Figure 1).
1. �e �rst set of plants was foliar sprayed with ZnO NPs (4 

millimoles aqueous solution).
2. For the next two di�erent sets, AM fungus and PSB were 

applied. Fi�y grams of Rhode grass cultured AM fungus; 
Glomus intraradices inoculum, was added to the soil around 
the seed to provide 500 IP (infective propagules) per pot. As 
a PSB, a suspension culture of Pseudomonas aeruginosa was 
used for the treatment of seeds. One milliliter of nutrient 
broth (Mannitol 10g, Yeast extract 1.0g, K2HPO4 0.5g, 

MgSO4.7H2O 0.2g, NaCl 0.1g per liter of DDW) suspension 
contained approximately 1.5×109 cfu per ml of media. Seeds 
were coated with this suspension culture and dried in a cool 
shady place before sowing. 

3. For three di�erent sets, N, P, and Zn were amended in the 
pot soil as per recommended doses of 120, 60, and 25 kg/ha 
taking urea, single superphosphate, and ZnSO4 as fertilizers. 
�e fertilizer requirement per kg pot soil was calculated* as 
72, 104, and 19 mg, respectively.

Methodology
At 60 days a�er sowing (DAS), the plants were sampled to study 
the following growth features.

Growth analysis
�e root and shoot lengths of the two varieties were measured 
using a meter scale. �e ratio of the shoot by root length was 
calculated by dividing the lengths of the two. �e fresh and dry 
mass of roots and shoots was measured with an electronic 
balance. To analyze the dry mass, the uprooted plants (roots and 
shoots) were placed in an oven at 80°C for 72 h and wrapped in 
butter paper. �e dried plants were then weighed to record plant 
dry mass. �e leaf area of randomly selected leaves from each 
variety was determined by the graph paper method of Pandey 
and Singh [41].

Total chlorophyll and proline content in leaves
�e leaf ’s total chlorophyll content was estimated in �nely cut 
fresh leaves following the method of Mackinney [42]. �e leaf 
proline content in fresh tissue was determined by following the 
method of Bates et al. [43].

Activity of Carbonic anhydrase (CA) and Nitrate 
reductase (NR) enzyme
Carbonic anhydrase activity (CA, E.C. 4.2.1.1) and nitrate 
reductase activity (NR, E.C. 1.6.6.1) were determined by 
following Dwivedi and Randhawa [13] and Jaworski [44] in 
fresh leaf samples.

Statistical analysis
�e experiment was conducted according to a simple 
randomized block design (SRBD). Each treatment was 
replicated �ve times (n=5), and three plants per pot were 
maintained where each pot was considered a replicate. 
Treatment means were compared by analysis of variance using 
R ver. 3.1.0 for Windows. �e least signi�cant di�erence (LSD) 
between treatment means was calculated at a 5% probability 
level (p< 0.05). 

Results
Growth parameters
Most of the (bio)fertilizer treatments (ZnO NPs, Zn, N, P, PSBs 
or AMF) promoted the growth (length, fresh mass, dry mass of 
root and shoot and leaf area) parameters in both varieties in a 
treatment-dependent manner at 60 DAS (Figure 2). However, 
the maximum stimulation of most of the growth parameters is 
achieved by ZnO NPs followed by either PSB or AMF. However, 
the Alankar variety outperformed the treatment here. �e root 
dry mass of Alankar for ZnO NPs, PSB, and AMF was 88%, 
62%, and 86%, respectively, while for shoot dry mass it was 83%, 
72%, and 80%, compared to control plants. For the same 
treatments leaf area improvement of Alankar was 35%, 28%, 
and 34%, and for Rohini, it was 33%, 23%, and 28%, 
respectively. �e ratio of the shoot by root length showed 
di�erent responses for the treatments.

Total chlorophyll content in leaves
�e total chlorophyll content (Figure 3A) in leaves increased 
signi�cantly (p≤0.05) when the two varieties were foliar sprayed 
with ZnO NPs. Alankar registered a 28% increase, while Rohini 
re�ected a 19% increase. �e PSB and AMF treatments also 

signi�cantly (p≤0.05) increased the leaf chlorophyll contents by 
28% and 34% in Alankar and 10% and 16% in Rohini, 
respectively, compared to the control plants. No signi�cant (p≤
0.05) increase in leaf chlorophyll level was noticed against 
soil-mediated N, P, and Zn treatments in the two varieties of 
mustard. 

Proline content in leaves
A signi�cant (p≤0.05) increase in leaf proline content (Figure 
3B) was recorded against the leaf-sprayed ZnO NPs and the 
soil-mediated two biofertilizers (PSB and AMF/VAM) and 
nitrogen treatment in the Alankar and Rohini varieties of 
mustard plants. �e data indicated that proline accumulation 
was higher in Alankar than in Rohini against the given 
treatments. For the above treatments, the increase was 46%, 
39%, 42%, and 37%, respectively, for Alankar. For Rohini, the 
increase was lesser, and in the order of ZnO 
NPs>AMF>PSB>N, an insigni�cant increase of proline was 
registered for the treatments of soil-mediated Zn and P 
recorded compared to control plants in the two varieties.

Nitrate reductase (NR) and carbonic anhydrase (CA) 
activity
�e two mustard varieties; Alankar and Rohini, showed a 
signi�cant (p≤0.05) increase in NR and CA activity (Figure 3C 
and 3D) compared to most of the treatments. �e increase in 

the activity of these enzymes against all the treatments of 
chemicals and biofertilizers was higher in Rohini than in 
Alankar. For NR activity, ZnO NP was followed by Zn and N 
treatments in the two varieties, and for CA, it was followed by 
AMF/VAM and PSBs, respectively. For NR activity, the increase 
against ZnO NP treatment was 140% and 111% in Alankar. For 
the Zn and N treatments, however, the increase in NR activity 
was 99% and 72%, respectively, compared to the control plants. 
�e CA activity was 79% and 58% for the two varieties, Alankar 
and Rohini, respectively. 

Discussion
Our agricultural system depends on the supplementation of 
primary nutrients (such as N, P, and K) to maximize crop 
output and support modern agriculture [45]. Mineral ion 
uptake properties show variation among plant species and 
cultivars [46]. In mustard plants, the growing seeds and leaves 
compete for nitrogen, and the size of the nitrogen pool in the 
vegetative sections largely determines seed set, seed growth, and 

�nal seed production [47,48]. Nitrogen supply in�uences 
several growth parameters, produces more robust growth and 
development, and increases plant height, number of �owering 
branches, total plant weight, and leaf area, all of which 
cumulatively enhance the yield output [49,50]. Brassica growth 
and yield improved with the application of 100–130 kg/ha 
nitrogen, while yield also increased at the same rate with the 
application of phosphorus [51-54]. However, this demand is 
typically higher in arid and semiarid environments [55,56]. As 
stated above, phosphorus has a greater impact on yield than 
nitrogen and potassium. Phosphorus is a component of nucleic 
acids, cell signaling, and membrane phospholipids. It also plays 
a role in energy metabolism, cell division, and the formation of 
several coenzymes, including ATP, NAD(P)H, and GTP [57]. P 
de�ciency manifests as visible purplish pigmentation on leaves, 
young, stunted stems, early leaf shedding, and reduced seed 
output [58,59]. Single, double, and triple superphosphate (SSP, 
DSP, TSP), ammonium phosphate, dicalcium phosphate, basic 
slag, calcium meta-phosphate, rock phosphate, bone meal, etc., 
are the main sources of plant phosphorus [60]. �e application 
of chemical fertilizers also poses a serious threat to nitrogen and 
other chemical pollution in soil and water bodies, leading to 
eutrophication [61]. To avoid nitrogen pollution and 
eutrophication of nutrients in water bodies, the application of 
nanosized nutrients, such as nanofertilizers, nanobiochar, and 
essential element nanoparticles, through foliar spraying has 
become a trend in recent studies because it minimizes the loss 
of nutrients and allows them to be e�ciently absorbed by plant 
leaves due to their nano size, which saves the environment and 
expenses of farmers [18, 62].

 �e �ndings of the present study demonstrated that the use 
of ZnO NPs improved the growth of two varieties, including the 
root and shoot length, their ratio, fresh and dry weight, and leaf 
area (Figure 2). Signi�cant di�erences were seen in the foliar 
delivery of ZnO NPs compared to soil amendment of Zn, which 
may be a cost-e�ective method for providing nutrients to the 
plants. A�er nitrogen, phosphorus, and potassium, Zn is 
regarded as the nutrient that limits yield the most both globally 
and in Indian soils [63]. According to estimates, 36.5% of 
Indian soils lack Zn [64]. While it is normal practice in modern 
agriculture to add fertilizers to complement natural soil fertility, 
temperate and tropical soils frequently continue to be low in 
micronutrients, particularly Zn [4,65]. Two forms of Zn 
in�uenced mustard growth di�erently. In general, foliar 
treatments with 4 mM ZnO NPs brought signi�cant 
improvement in growth parameters compared to Zn, N, or P 
given through soil and control plants. �e growth promotion 
was even higher than that with biofertilizers, PSBs, and AM 
fungi. Zinc from ZnO NPs can accumulate in the leaves through 
foliar feeding, making these NPs potentially useful sources of 
Zn for plants to employ in metabolic processes [66,67]. 
According to a recent study by [68], the predominant channel 
for wheat and sun�ower (Helianthus annuus L.) to absorb ZnO 
NPs under experimental conditions was through the leaf 
cuticle. In addition, ZnO NPs are used as nanofertilizers, which 
may be a more e�ective and slow-releasing source of Zn than 
conventional fertilizers or other sources of Zn [66,69,70]. 
According to a study by [71], applying ZnO NPs to the soil at 
various concentrations increased the Zn content of wheat 
tissues under normal or water-stress conditions. A�erwards, 
Adrees et al. [72] demonstrated that foliar exposure to ZnO NPs 
enhanced wheat development through foliar application. �e 

larger weights of the plants may be a factor in the enhanced 
availability of Zn as NPs compared to Zn applied to the soil. �e 
mustard plants’ growth and antioxidant enzyme activities were 
improved when ZnO NPs were sprayed [73]. �e intensi�cation 
of the metabolism aided by Zn is what causes the rise in dry 
mass. Enzymes, including dehydrogenases, aldolases, 
isomerases, transphosphorylases, and RNA and DNA 
polymerases, all require zinc to function [74]. Moreover, it 
contributes to tryptophan production, cell division, membrane 
structure maintenance, and photosynthesis and functions as a 
regulatory cofactor in protein synthesis [3,9]. Several species 
have been the subject of ZnO NPs experiments, and the overall 
bene�cial interactions have been previously characterized 
[35,74-76]. An increase in the FW and DW of seedlings growing 
in the presence of ZnO NPs was observed in earlier studies [77]. 
Reduced growth and plant biomass, restriction of cell 
elongation and division, wilting, curling, and rolling of young 
leaves, chlorotic and necrotic leaf tips, and suppression of root 
growth are all signs of Zn toxicity [78,79]. According to the 
�ndings of Rossi et al. [80] on co�ee plants treated with ZnO 
NPs, the photosynthetic apparatus was enhanced. In the present 
study, positive interactions were found between ZnO NPs and 
the net carbon assimilation rate and stomatal conductance. 

 In the present study, the e�cacy of treatments followed the 
pattern of ZnO NPs>AMF>PSBs>N and increased the leaf 
chlorophyll level, proline content, NR, and CA activity (Figure 
3 A-D). Nitrogen is a key nutrient component that gives crops 
their lush green color by increasing the amount of chlorophyll 
in the leaves and boosts biomass by increasing carbon �xation. 
However, depending on factors such as soil type, climate, 
management practices, when nitrogen is applied, cultivars, etc., 
nitrogen fertilizer needs can vary greatly [81]. Zn is a cofactor of 
carbonic anhydrase, which raises the amount of CO2 in the 
chloroplast and, as a result, also increases the ability of the 
Rubisco enzyme to carboxylate [82]. Di�erent macro-and 
micronutrient uptake can be a�ected by zinc’s e�ects on 
absorption [83,84]. Zn typically causes severe Fe de�ciency 
chlorosis in dicots on acidic soils. Crops such as lettuce, 
mustard, and beet are particularly vulnerable to too much soil 
Zn [85]. Zn transport and uptake by leaves were also 
investigated. Typically, ZnO NPs enter the leaf system through 
wounds, hydathodes, cuticle penetration, and stomata [10]. 
�is is evident from the data, which reveal that ZnO NPs 
markedly increased Zn levels in the leaf, while ZnSO4 did not 
signi�cantly accumulate when compared to the control. It 
results from the e�ects of adding P and other minerals, as well 
as phytohormones secreted by PSBs and AM fungi in the root 
zone. Positive e�ects of ZnO NPs were also studied on the seed 
germination and vegetative growth in di�erent crops of Arachis 
hypogea [86], Vigna radiata [87,88], Cicer arietinum [89], 
Glycine max [90], Helianthus annuus [91], Lycopersicon 
esculentum [92], Sesamum indicum [93], Brassica nigra [94] and 
Brassica juncea [95]. PGPR, such as PSB, proves useful in 
enhancing crop productivity by making nutrients more 
bioavailable in the soil with chemical secretion in the 
rhizosphere [96]. Alone and combination of AM fungi with 
biocontrol fungi or nanoparticles also prove e�ective in 
increasing the crop productivity in plants by increasing the 
phosphorus and other nutrients available in the soil by releasing 
chemicals in the soil that change the pH and amount of 
available organic matter content in the soil [97-99]. 
Combinations of PGPR and AMF improved the crop 

productivity in various plants and also helped to manage 
growth under stress conditions [100-103]. Although the 
interaction of Glomus species with mustard plants is not 
common, recent studies clearly show that it helps the plants to 
increase their resistance against pathogens and increase crop 
productivity by regulating enzymatic activities in plants and 
increasing the amount of nutrients and organic matter in the 
soil [104-106]. 

Conclusions 
Foliar exposure to ZnO NPs may be thought of as both an 
e�cient and di�erent method to increase productivity 
compared to other treatments. Nanoparticles have microscopic 
size and large surface area, which help maximize their uptake 
and translocation as nutrients in plants via foliar spray. As a 
result, ZnO NPs had more favorable e�ects on plant growth, 
morphology, development, physiology, and metabolism than 
traditional Zn salt because nanoparticles induce the genes 
involved in nutrient assimilation pathways. It may also be 
crucial to research how ZnO NPs a�ect other nutrients 
necessary for plant health as well as the general ecology of the 
rhizosphere. When compared to chemical fertilizer applications 
of P or even N, biofertilizers such as AMF/VAM and PSBs are 
also preferable because their chemical activity solubilizes and 
increases the bioavailability of nutrients in the soil, ultimately 
enhancing the growth of the treated plants. Further research is 
required to grow di�erent crop species in the �eld under diverse 
agroclimatic circumstances to determine the cost-e�ectiveness 
and adaptability of foliar ZnO NP exposure.

 However, a future aspect of this research is to determine 
the growth and yield responses of crops upon exposure to the 
combination of nanoparticles and biofertilizers. 
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